Research on ultrasonic vibration-assisted laser polishing of the 304 stainless steel

2021 ◽  
Vol 62 ◽  
pp. 403-417
Author(s):  
Di Kang ◽  
Ping Zou ◽  
Hao Wu ◽  
Wenjie Wang ◽  
Jilin Xu
IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 206146-206163
Author(s):  
Di Kang ◽  
Ping Zou ◽  
Hao Wu ◽  
Wenjie Wang ◽  
Jilin Xu

2021 ◽  
Author(s):  
Shiyu Wei ◽  
Ping Zou ◽  
Jiahao Zhang ◽  
Jingwei Duan ◽  
Rui Fang

Abstract In this paper, the peak heights of several turning methods were analyzed theoretically. Based on the results of theoretical analysis, a 3D-UVAT device driven by a single actuator was developed. To validate this design, the theory and experiment of 3D-UVAT have been undertaken. The FEA results show that design is safe, and can achieve obvious displacements in X-axis, Y-axis, and Z-axis. In the experiment, 304 stainless steel was chosen as experimental material. For comparison, CT, UVAT, and UEVT experiments were also carried out. The experimental results show that with the help of ultrasonic vibration, the surface grooves and defects are significantly reduced. This phenomenon is more obvious on machined surface obtained by 3D-UVAT. Three-dimensional surface topography shows that the roughness value Sa obtained by 3D-UVAT is smaller than CT and UVAT. Under some cutting conditions, the roughness value Sa of machined surface obtained by 3D-UVAT is smaller than UEVT. Thus, the results of theory and experiment proved that the 3D ultrasonic vibration-assisted turning driven by a single actuator has a great potential in improving the quality of machined surface.


Author(s):  
J. A. Korbonski ◽  
L. E. Murr

Comparison of recovery rates in materials deformed by a unidimensional and two dimensional strains at strain rates in excess of 104 sec.−1 was performed on AISI 304 Stainless Steel. A number of unidirectionally strained foil samples were deformed by shock waves at graduated pressure levels as described by Murr and Grace. The two dimensionally strained foil samples were obtained from radially expanded cylinders by a constant shock pressure pulse and graduated strain as described by Foitz, et al.


Author(s):  
Y. L. Chen ◽  
J. R. Bradley

Considerable effort has been directed toward an improved understanding of the production of the strong and stiff ∼ 1-20 μm diameter pyrolytic carbon fibers of the type reported by Koyama and, more recently, by Tibbetts. These macroscopic fibers are produced when pyrolytic carbon filaments (∼ 0.1 μm or less in diameter) are thickened by deposition of carbon during thermal decomposition of hydrocarbon gases. Each such precursor filament normally lengthens in association with an attached catalyst particle. The subject of filamentous carbon formation and much of the work on characterization of the catalyst particles have been reviewed thoroughly by Baker and Harris. However, identification of the catalyst particles remains a problem of continuing interest. The purpose of this work was to characterize the microstructure of the pyrolytic carbon filaments and the catalyst particles formed inside stainless steel and plain carbon steel tubes. For the present study, natural gas (∼; 97 % methane) was passed through type 304 stainless steel and SAE 1020 plain carbon steel tubes at 1240°K.


Sign in / Sign up

Export Citation Format

Share Document