microstructural changes
Recently Published Documents


TOTAL DOCUMENTS

1846
(FIVE YEARS 379)

H-INDEX

66
(FIVE YEARS 9)

Author(s):  
Christian Geindreau ◽  
Fabrice Emeriault ◽  
Abdelali Dadda ◽  
Olatounde Yaba ◽  
Lorenzo Spadini ◽  
...  

2022 ◽  
Vol 54 (4) ◽  
Author(s):  
Haixin Zhao ◽  
Xiaodong Du ◽  
Shuqiang Chen ◽  
Limin Yang ◽  
Feng Peng ◽  
...  

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 255
Author(s):  
Ruihua Hao ◽  
Zizhao Zhang ◽  
Zezhou Guo ◽  
Xuebang Huang ◽  
Qianli Lv ◽  
...  

This research examined the drying–wetting cycles induced changes in undrained triaxial shear strength parameters and microstructural changes of Yili loess. The drying–wetting cycles were selected as 0, 1, 3, 5, 10, 20 and 30. Then, we collected Yili loess samples and performed unconsolidated-undrained (U-U) triaxial shearing tests to ascertain the variation in shear strength parameters with drying–wetting cycles. Additionally, we investigated the microstructural changes of Yili loess samples under drying–wetting cycles simultaneously via nuclear magnetic resonance (NMR) and scanning electron electroscopy (SEM). Finally, we established a grey correlation model between shear strength and microstructural parameters. Under U-U conditions, the prime finding was that the loess’s shear strength parameters changed overall after drying–wetting cycles; in particular, the internal friction angle φ dropped significantly while the cohesion c changed only slightly during cycles. For all the cycles, the first cycle gave the highest change. Soil morphology deterioration was evident at the initial stage of cycles. During the entire drying–wetting cyclic process, pore size distribution showed progressive variance from two-peak to a single-peak pattern, while both porosity and the fractal dimension of pores increased gradually towards stability. Soil particle morphology became slowly simple and reached the equilibrium state after 20 drying–wetting cycles. Under cyclic drying–wetting stress, the shear strength parameter changes were significantly correlated to microstructural modifications. This investigation was related to loess in the westerly region. The findings were expected to provide new insight into establishment of the connection between microstructure and macro stress–strain state of loess. To some extent, it provided a theoretical basis for the prevention and control of loess engineering geological disasters in Yili, Xinjiang and other areas with similar climate and soil types.


Diagnostics ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 26
Author(s):  
Lisa Novello ◽  
Nivedita Agarwal ◽  
Sabina Vennarini ◽  
Stefano Lorentini ◽  
Domenico Zacà ◽  
...  

Proton beam therapy (PBT) is an effective pediatric brain tumor treatment. However, the resulting microstructural changes within and around irradiated tumors are unknown. We retrospectively applied diffusion tensor imaging (DTI) and free-water imaging (FWI) on diffusion-weighted magnetic resonance imaging (dMRI) data to monitor microstructural changes during the PBT and after 8 months in a pilocytic astrocytoma (PA) and normal-appearing white matter (NAWM). We evaluated the conventional MRI- and dMRI-derived indices from six MRI sessions (t0–t5) in a Caucasian child with a hypothalamic PA: at baseline (t0), during the PBT (t1–t4) and after 8 months (t5). The tumor voxels were classified as “solid” or “fluid” based on the FWI. While the tumor volume remained stable during the PBT, the dMRI analyses identified two different response patterns: (i) an increase in fluid content and diffusivity with anisotropy reductions in the solid voxels at t1, followed by (ii) smaller variations in fluid content but higher anisotropy in the solid voxels at t2–t4. At follow-up (t5), the tumor volume, fluid content, and diffusivity in the solid voxels increased. The NAWM showed dose-dependent microstructural changes. The use of the dMRI and FWI showed complex dynamic microstructural changes in the irradiated mass during the PBT and at follow-up, opening new avenues in our understanding of radiation-induced pathophysiologic mechanisms in tumors and the surrounding tissues.


2021 ◽  
Vol 128 (1) ◽  
Author(s):  
Radek Ševčík ◽  
Alberto Viani ◽  
Lucia Mancini ◽  
Marie‑Sousai Appavou ◽  
Dita Machová

Sign in / Sign up

Export Citation Format

Share Document