Computer aided machining fixture design algorithm and software based on case learning for near-net-shaped jet engine blade

2021 ◽  
Vol 69 ◽  
pp. 545-555
Author(s):  
Dongbo Wu ◽  
Hui Wang ◽  
Lijiang Huang ◽  
Yi Wang
2021 ◽  
Vol 13 (3) ◽  
pp. 168781402110027
Author(s):  
Byung Chul Kim ◽  
Ilhwan Song ◽  
Duhwan Mun

Manufacturers of machine parts operate computerized numerical control (CNC) machine tools to produce parts precisely and accurately. They build computer-aided manufacturing (CAM) models using CAM software to generate code to control these machines from computer-aided design (CAD) models. However, creating a CAM model from CAD models is time-consuming, and is prone to errors because machining operations and their sequences are defined manually. To generate CAM models automatically, feature recognition methods have been studied for a long time. However, since the recognition range is limited, it is challenging to apply the feature recognition methods to parts having a complicated shape such as jet engine parts. Alternatively, this study proposes a practical method for the fast generation of a CAM model from CAD models using shape search. In the proposed method, when an operator selects one machining operation as a source machining operation, shapes having the same machining features are searched in the part, and the source machining operation is copied to the locations of the searched shapes. This is a semi-automatic method, but it can generate CAM models quickly and accurately when there are many identical shapes to be machined. In this study, we demonstrate the usefulness of the proposed method through experiments on an engine block and a jet engine compressor case.


1995 ◽  
pp. 122-154 ◽  
Author(s):  
A. Y. C. Nee ◽  
K. Whybrew ◽  
A. Senthil kumar

2022 ◽  
Vol 25 (6) ◽  
pp. 708-719
Author(s):  
D. A. Ishenin ◽  
A. S. Govorkov

The study aimed to develop an algorithm for computer-aided design (CAD) of working operations. A processing route for machining components was developed based on the criteria of production manufacturability, industrial data and a digital model of the product. The process of machining a workpiece was analysed using a method of theoretical separation. The machining process of a frame workpiece was used as a model. The identified formal parameters formed a basis for developing a CAD algorithm and a model of manufacturing route associated with the mechanical processing of a work-piece applying a condition-action rule, as well as mathematical logic. The research afforded a scheme for selecting process operations, given the manufacturability parameters of a product design. The concept of CAD algorithm was developed to design a production process of engineering products with given manufacturability parameters, including industrial data. The principle of forming a route and selecting a machining process was proposed. Several criteria of production manufacturability (labour intensity, consumption of materials, production costs) were selected to evaluate mechanical processing. A CAD algorithm for designing technological operations considering the parameters of manufacturability was developed. The algorithm was tested by manufacturing a frame workpiece. The developed algorithm can be used for reducing labour costs and development time, at the same time as improving the quality of production processes. The formalisation of process design is a crucial stage in digitalisation and automation of all production processes.


1981 ◽  
Vol 12 ◽  
Author(s):  
M.R. Jackson ◽  
M.F.X. Gigliotti ◽  
S.W. Yang ◽  
J.L. Walter

ABSTRACTIn the aligned Ni-MC eutectic alloys being developed for jet engine blade applications, the fibers are considered to be Tac, Tic, etc. In fact, these fibers will contain Cr, Mo, W and possibly other elements as substitutions for the “M” constituent, and often will not be stoichiometric. Quantitative chemical analysis of fibers is difficult because of their size. However, lattice parameter measurements can be used to learn much a out the carbide chemistry and stoichiometry. Results will be described in detail for fibers extracted from simple Ni-TaC, Ni,Cr-TaC and Ni,Cr,AI-Tac systems. In addition, experiments on mixed (Ta,V)C and (Ta,Ti)C carbides will be discussed. Carbide lattice parameters can be understood in terms of the free energies of formation of the various carbides.


Sign in / Sign up

Export Citation Format

Share Document