processing route
Recently Published Documents


TOTAL DOCUMENTS

744
(FIVE YEARS 172)

H-INDEX

37
(FIVE YEARS 6)

2022 ◽  
Vol 893 ◽  
pp. 162108
Author(s):  
Taesung Park ◽  
Hamid Reza Javadinejad ◽  
Young-Kuk Kim ◽  
Hye Jung Chang ◽  
Haneul Choi ◽  
...  

2022 ◽  
Vol 25 (6) ◽  
pp. 708-719
Author(s):  
D. A. Ishenin ◽  
A. S. Govorkov

The study aimed to develop an algorithm for computer-aided design (CAD) of working operations. A processing route for machining components was developed based on the criteria of production manufacturability, industrial data and a digital model of the product. The process of machining a workpiece was analysed using a method of theoretical separation. The machining process of a frame workpiece was used as a model. The identified formal parameters formed a basis for developing a CAD algorithm and a model of manufacturing route associated with the mechanical processing of a work-piece applying a condition-action rule, as well as mathematical logic. The research afforded a scheme for selecting process operations, given the manufacturability parameters of a product design. The concept of CAD algorithm was developed to design a production process of engineering products with given manufacturability parameters, including industrial data. The principle of forming a route and selecting a machining process was proposed. Several criteria of production manufacturability (labour intensity, consumption of materials, production costs) were selected to evaluate mechanical processing. A CAD algorithm for designing technological operations considering the parameters of manufacturability was developed. The algorithm was tested by manufacturing a frame workpiece. The developed algorithm can be used for reducing labour costs and development time, at the same time as improving the quality of production processes. The formalisation of process design is a crucial stage in digitalisation and automation of all production processes.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 132
Author(s):  
Doina Raducanu ◽  
Vasile Danut Cojocaru ◽  
Anna Nocivin ◽  
Radu Hendea ◽  
Steliana Ivanescu ◽  
...  

The aim of the present paper is to apply the mechanical alloying process to obtain from powder components a new biodegradable Mg-based alloy powder from the system Mg-xZn-Zr-Ca, with high biomechanical and biochemical performance. Various processing parameters for mechanical alloying have been experimented with the ultimate goal to establish an efficient processing route for the production of small biodegradable parts for the medical domain. It has been observed that for the same milling parameters, the composition of the powders has influenced the powder size and shape. On the other hand, for the same composition, the highest experimented milling speed and time conduct to finer powder particles, almost round-shaped, without pores or various inclusions. The most uniform size has been obtained for the powder sample with 10 wt.%Zn. These powders were finally processed by selective laser melting, an additive manufacturing technology, to obtain a homogeneous experimental sample, without cracking, for future more systematical trials.


Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 69
Author(s):  
Moisés Oñoro ◽  
Julio Macías-Delgado ◽  
María A. Auger ◽  
Jan Hoffmann ◽  
Vanessa de Castro ◽  
...  

Reduced activation ferritic (RAF) steels are expected to be widely used in challenging nuclear industrial applications under severe thermo-mechanical regimes and intense neutron loads. Therefore, actual research panorama is facing the strengthening strategies necessary to maximize both performance and endurance under these conditions. Oxide dispersion strengthened (ODS) RAF steels are leader candidates as structural materials in fusion energy reactors thanks to the reinforcement obtained with a fine dispersion of nanosized oxides in their matrix. In this study, the influence of the initial powder particle size and the selected processing route on the final material has been investigated. Two RAF ODS steels coming from atomized pre-alloyed powders with nominal particle powder sizes of 70 and 30 µm and composition Fe-14Cr-2W-0.4Ti-0.3Y2O3 (wt. %) were manufactured by mechanical alloying. Alloyed powders were compacted by hot isostatic pressing, hot crossed rolled, and annealed at 1273 K. Initial powder particle size differences minimize after milling. Both steels present an almost completely recrystallized material and similar grain sizes. The same type and distributions of secondary phases, Cr-W-rich, Ti-rich, and Y-Ti oxide nanoparticles, have been also characterized by transmission electron microscopy (TEM) in both alloy samples. The strengthening effect has been confirmed by tensile and Charpy impact tests. The two alloys present similar strength values with slightly better ductile brittle transition temperature (DBTT) and ductility for the steel produced with the smaller powder size.


2021 ◽  
Vol 19 (2) ◽  
Author(s):  
Lina Lina

This research describes how Advertising Response Modelling (ARM) provides a framework to measure advertising performance by integrating several multiple measures used in copy research. The author reports the study examining how social distancing policy advertising can effect of three variables: attitude toward ads, attitude toward brand, and social distancing intention. The aims of this research were to measure the influence of cognitive response and attitude toward social distancing intention in advertising and to analyze consumer’s information processing route of an ad. Survey design research was prepared in this study. The participants in this research are consumers who social distancing intention. There are 138 participants in this research. Those participants were exposed an advertisement of social distancing policy. Then, those participants filled out the self-administered and the structure questionaire. By using ARM and One way ANOVA analysis, this research shows that advertising has influenced positively thparticipants. However, there are not significantly diffrerent between men and women participants to response the advertising.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 15
Author(s):  
Quentin Dehaine ◽  
Laurens T. Tijsseling ◽  
Gavyn K. Rollinson ◽  
Mike W. N. Buxton ◽  
Hylke J. Glass

Cobalt (Co) mine production primarily originates from the sediment-hosted copper (Cu) deposits of the Democratic Republic of Congo (DRC). These deposits usually consist of three ore zones with a supergene oxide ore blanket overlying a transition zone which grades into a sulphide zone at depth. Each of these zones display a mineral assemblage with varying gangue mineralogy and, most importantly, a distinct state of oxidation of the mineralisation. This has direct implications for Cu and Co extraction during mineral processing as it dictates which processing method is to be used (i.e., leaching vs. flotation) and affects the performance of these. To optimise resource efficiency, reduce technical risks and environmental impacts, comprehensive understanding of variation of ore mineralogy and texture in the deposit is essential. By defining geometallurgical ore types according to their inferred metallurgical behaviour, this information can serve to classify the resources and improve resource management. To obtain insight into the spatial distribution of mineral grades, it is necessary to develop techniques that have the potential to measure rapidly and, preferably, within the mine at relatively low-cost. In this study, the application of portable Fourier transformed infrared (FTIR) spectroscopy is investigated to measure the mineralogy of drill core samples. A set of samples from a sediment-hosted Cu-Co deposit in DRC was selected to test this approach. Results were validated using automated mineralogy (QEMSCAN). Prediction of gangue and target mineral grades from the FTIR spectra was achieved through partial least squares regression (PLS-R) combined with competitive adaptive reweighted sampling (CARS). It is shown that the modal mineralogy obtained from FTIR can be used to classify the ore according to type of mineralisation and gangue mineralogy into geometallurgical ore types. This classification supports selection of a suitable processing route and is likely to affect the overall process performance.


2021 ◽  
Vol 11 (1) ◽  
pp. 65-85
Author(s):  
Shubham Sharma ◽  
Vikas Patyal ◽  
P. Sudhakara ◽  
Jujhar Singh ◽  
Michal Petru ◽  
...  

Abstract The carbon nanotube (CNT) is becoming more popular due to their low-density, high-strength etc. Among CNTs, multi-walled carbon nanotubes (MWCNTs) are gaining more importance due to their enhanced thermal and electrical conductivity. The present research is exploring the applicability of MWCNTs reinforced with AA2024-T351 alloys for electromechanical applications. This study is currently undertaken for using MWCNTs as a reinforcing particulate for the purpose to enhance the characteristics including low density, high strength, and hardness together with excellent thermal and electrical conductivity of the aluminum alloy matrices. Therefore, this article provides a state-of-the-art experimental approach to fabricate and furthermore, to evaluate the mechanical characteristics, microstructural analysis, and fatigue behavior of Al–Cu–Mg–T351/MWCNT composites under both the mechanical and thermal loading by utilizing powder technology processing route. The uniform dispersion of CNTs has been exposed using ball milling process. Results revealed that the MWCNTs provide extraordinary synergistic strength, enhances fatigue resistance, creep resistance, ductility, and other mechanical characteristics of the aluminum-based composites. The mechanical loading of the composite exhibited increased properties as compared to thermal-loaded aluminum-MWCNT composites. Findings conclude that the maximum hardness of 35Hv obtained for sintered AA2024-T351 and 45Hv for 0.5% MWCNT heat-treated samples indicate that the addition of MWCNT enhances the hardness which may be because CNT is evenly dispersed at the interfacial space. Maximum UTS of 105.21 MPa was obtained with 0.5% MWCNT for sintered composites. Microstructural analysis of the Al–Cu–Mg–T351/MWCNTs composite exhibits reasonably uniform distribution, void formation, and good interfacial bonding. X-ray Diffraction method patterns of fabricated composite shows that the CNT is present at 2β = 23.6 and 44.6°, whereas high peaks of aluminum are present at uniform dispersed positions. Transmission electron magnifying instrument study further substantiates the above research. Fracture micrographs of the Al–Cu–Mg–T351/MWCNTs composite portray the resistant nature of the nanotubes due to the presence of CNTs, Al–Cu, and aluminum carbide elements in the alloy and the reactions that happened during heat treatment. This significant improvement was attributed to the shear interactions among the constituents and high load carrying capacity of the CNT, uniform dispersion, and interface bond strength among the matrix and constituents. The findings in the study will undoubtedly be beneficial for the development of high-strength, MWCNTs/Al–Cu–Mg–T351, matrix composites in future for multifunctional applications on broader spectrum.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012062
Author(s):  
A N Pestova ◽  
O S Trushin

Abstract An experimental stand for express diagnostics of multilayer spin tunnel structures has been developed. The current-in-plane tunnelling method (CIPT) requires no processing, is fast, and provides reliable data which are reflective of the deposition only. The stand is based on the four-probe method for measuring resistance at external alternating magnetic field. This technique can be applied after only a short processing route, thereby saving time and resources, and reducing the potential for damaging the junction.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1888
Author(s):  
Zigan Xu ◽  
Jiyao Li ◽  
Xiao Shen ◽  
Tarek Allam ◽  
Silvia Richter ◽  
...  

Developing medium-Mn steels (MMnS) demands a better understanding of the microstructure evolution during thermo-mechanical treatments (TMTs). This study demonstrates the relationship among processing, microstructure, and mechanical properties of a warm-rolled medium-Mn steel (MMnS) containing 1.5 wt. % Cu and 1.5 wt. % Ni. After short-time warm rolling (WR) in an intercritical temperature range, a significant quantity (40.6 vol.%) of austenite was reverted and retained after air cooling. The microstructure and tensile properties of the WR specimens were compared with two typical process routes, namely hot rolling+ cold rolling+ annealing+ tempering (CRAT) and warm rolling+ annealing+ tempering (WRAT). The WR specimen exhibited comparable tensile properties with the CRAT specimens (967 MPa yield strength, 1155 MPa tensile strength, 23% total elongation), with a remarkably shortened process route, which was derived from the dislocation accumulation and austenite reversion during rolling. The WR route stands out among the traditional CRAT and the extended WRAT routes for its excellent tensile properties and compact processing route.


Sign in / Sign up

Export Citation Format

Share Document