scholarly journals Engineering working operations based on parameters of product manufacturability using a computer-aided design algorithm

2022 ◽  
Vol 25 (6) ◽  
pp. 708-719
Author(s):  
D. A. Ishenin ◽  
A. S. Govorkov

The study aimed to develop an algorithm for computer-aided design (CAD) of working operations. A processing route for machining components was developed based on the criteria of production manufacturability, industrial data and a digital model of the product. The process of machining a workpiece was analysed using a method of theoretical separation. The machining process of a frame workpiece was used as a model. The identified formal parameters formed a basis for developing a CAD algorithm and a model of manufacturing route associated with the mechanical processing of a work-piece applying a condition-action rule, as well as mathematical logic. The research afforded a scheme for selecting process operations, given the manufacturability parameters of a product design. The concept of CAD algorithm was developed to design a production process of engineering products with given manufacturability parameters, including industrial data. The principle of forming a route and selecting a machining process was proposed. Several criteria of production manufacturability (labour intensity, consumption of materials, production costs) were selected to evaluate mechanical processing. A CAD algorithm for designing technological operations considering the parameters of manufacturability was developed. The algorithm was tested by manufacturing a frame workpiece. The developed algorithm can be used for reducing labour costs and development time, at the same time as improving the quality of production processes. The formalisation of process design is a crucial stage in digitalisation and automation of all production processes.

2020 ◽  
Vol 32 (5) ◽  
pp. 691-705
Author(s):  
Nazanin Ansari ◽  
Sybille Krzywinski

PurposeThis paper aims to introduce a process chain spanning from scanned data to computer-aided engineering and further required simulations up to the subsequent production. This approach has the potential to reduce production costs and accelerate the procedure.Design/methodology/approachA parametric computer-aided design (CAD) model of the flyer wearing a wingsuit is created enabling easy changes in its posture and the wingsuit geometry. The objective is to track the influence of geometry changes in a timely manner for following simulation scenarios.FindingsAt the final stage, the two-dimensional (2D) pattern cuts were derived from the developed three-dimensional (3D) wingsuit, and the results were compared with the conventional ones used in the first stages of the wingsuit development.Originality/valueProposing a virtual development process chain is challenging; apart from the fact that the CAD construction of a wingsuit flyer – in itself posing a complicated task – is required at a very early stage of the procedure.


Mechanik ◽  
2017 ◽  
Vol 90 (8-9) ◽  
pp. 805-807
Author(s):  
Izabela Rojek

The article presents the computer aided design methods as applied for arrangement of production processes in the range from the simplest to the most advanced ones. The idea behind the research procedure as conducted by the author was to develop a method, models and expert system that would resemble a human expert in the field. This goal was achieved using neural networks.


2015 ◽  
Vol 9 (2) ◽  
pp. 104-114 ◽  
Author(s):  
Mohammad Mi’radj Isnaini ◽  
◽  
Yusaku Shinoki ◽  
Ryuta Sato ◽  
Keiichi Shirase

A unique machining knowledge has led to several different perspectives between planners and operators as regards in designing a machining process plan. All precedents have shown the need to maintain a suitable machining process plan. Commercial Computer-Aided Design (CAD) and Computer-Aided Manufacturing (CAM) systems have facilitated the manipulation of 3D models to generate a machining process plan. The open Advanced Programming Interfaces (APIs) are also helpful in tailoring decision support systems to determine process plans. This study proposes an emergent system to generate flexible machining process plans. The proposed system considers the integration between design and manufacturing perspective to produce relevant machining process plan. The generation of process plans begins by considering the total removal volume of the raw material, estimating the removal features, thus analyzing and ordering several candidates of machining process plans. The total machining time and number of setups from each machining process plan candidate is analyzed and evaluated. Eventually, the proposed system is tested using several prismatic 3D models of a workpiece to show the outcomes.


2010 ◽  
Vol 139-141 ◽  
pp. 1264-1267 ◽  
Author(s):  
Ru Sheng Lu ◽  
Bin Yao ◽  
Bo Shi Yao ◽  
Ming Hui Chen

On the basis of analyzing the geometric characteristics of the helical groove, the interfer -ometry method for its processing is discussed. This paper establishes a mathematical model of the helical groove, using differential geometry theory and numerical analysis. This research analyzes the impact of machine adjustment parameters (i.e. setting angle) on the geometry specification (i.e. Rake angle) of the helical groove. The simulation examples are done by CAD (Computer Aided Design), and the reasonable adjustment of machine parameters will be obtained by computer simulation and statistical analysis. This will reduce the time for design, the number of trial samples, and production costs. This study provides a precise 3D helical cutter model which can be used in areas such as finite element analysis (FEA) and virtual cutting tests.


2021 ◽  
pp. 146808742110409
Author(s):  
Patrick Burkardt ◽  
Tamara Ottenwälder ◽  
Andrea König ◽  
Jörn Viell ◽  
Alexander Mitsos ◽  
...  

The shift from fossil to renewable fuels presents an opportunity to tailor a fuel’s molecular structure and composition to the needs of advanced internal combustion engine concepts, while simultaneously aiming for economic and sustainable fuel production. We have recently proposed a method for computer-aided design of tailor-made fuels that integrates aspects of both product and production pathway design. The present paper sets out to sequentially combine that method with experimental investigation on a single cylinder research engine and model-based early-stage process evaluation to create, validate, and benchmark a rationally designed multi-component biofuel for highly boosted spark-ignition engines. To this end, the computer-aided design approach is applied to a network of possible fuel components and their production pathways. The resulting optimal four-component fuel EBCC (50 mol% ethanol, 21 mol% 2-butanone, 15 mol% cyclopentane, and 14 mol% cyclopentanone) is analyzed with regard to combustion performance and estimated fuel production cost. Variations of both the indicated mean effective pressure and the relative air/fuel ratio were performed on an engine equipped with a compression ratio of 14.7. EBCC achieves indicated efficiencies that are significantly higher than those of RON 102 gasoline fuel and comparable to those of pure 2-butanone, an extremely knock-resistant fuel identified in a previous round of model-based fuel design. Furthermore, a strong reduction in engine-out soot emissions is observed compared to RON 102 gasoline. Early-stage process evaluation shows EBCC to have lower estimated fuel production costs than 2-butanone. Production costs of pure ethanol, however, are estimated to be even lower, mainly due to lower plant investment costs and a synthesis pathway that does not require hydrogen. The paper concludes with a brief perspective on further integration of the proposed sequential approach with the goal of co-optimizing the production and combustion of renewable fuel blends.


Sign in / Sign up

Export Citation Format

Share Document