Investigation on blanking of thin sheet metal using the ductile fracture criterion and its experimental verification

2004 ◽  
Vol 155-156 ◽  
pp. 1935-1942 ◽  
Author(s):  
K.H. Shim ◽  
S.K. Lee ◽  
B.S. Kang ◽  
S.M. Hwang
2014 ◽  
Vol 23 (8) ◽  
pp. 1189-1210 ◽  
Author(s):  
HS Liu ◽  
MW Fu

A modified ductile fracture criterion is proposed based on the traditional Ayada criterion and coded into the finite element simulation platform of VUMAT/ABAQUS for prediction and analysis of ductile fracture in metal plastic strain processes. In this modified ductile fracture criterion, stress triaxiality is taken into account, and more importantly, the exponential effect of the equivalent plastic strain on the damage behavior, which is generally ignored in other ductile fracture criteria, is also considered. The material related constants in the modified ductile fracture criterion are determined by tensile tests together with finite element simulations. The applicability and reliability of the ductile fracture criterion in ductile fracture prediction in two types of classic stress states, viz. shear stress, tensile stress in sheet metal forming, are investigated based on the deformation behavior and fracture occurrence in two case studies with two typical types of materials, i.e. Al 6061 and T10A. The materials have a wide range of plasticity. The simulation and experimental results verify the applicability and reliability of the developed ductile fracture criterion in prediction of the ductile fracture with and without necking in different stress states of plastic strain.


2015 ◽  
Vol 639 ◽  
pp. 543-550
Author(s):  
Rong Zeng ◽  
Liang Huang ◽  
Jian Jun Li

Sheet metal stamping is an important manufacturing process because of its high production rate and low cost, so the fracture prediction of stamping parts has become important issues. Recent experimental studies have shown that the quality of stamping parts can be increased by using ductile fracture criteria. This paper proposed a modified ductile fracture criterion based on the macroscopic and microscopic continuum damage mechanics (CDM). Three-dimensional (3D) explicit finite element analysis (FEA) are performed to predict the fracture behaviors of sheet metal stamping process. An approach to determine the material constants of modified ductile fracture criterion is presented with the help of uniaxial tensile tests and compressive tests. The results show that the modified ductile fracture criterion enables precise cup depth and fracture location of sheet metal stamping under nonlinear paths. Compared with typical ductile fracture criteria, the results predicted with modified ductile fracture criterion correlate the best with the experimental data.


2001 ◽  
Vol 4 (3-4) ◽  
pp. 319-333
Author(s):  
Vincent Lemiale ◽  
Philippe Picart ◽  
Sébastien Meunier

Sign in / Sign up

Export Citation Format

Share Document