Prediction of forming limit curve at fracture for sheet metal using new ductile fracture criterion

2018 ◽  
Vol 69 ◽  
pp. 255-265 ◽  
Author(s):  
Shahram Abbasnejad Dizaji ◽  
Haluk Darendeliler ◽  
Bilgin Kaftanoğlu
2010 ◽  
Vol 97-101 ◽  
pp. 4005-4009
Author(s):  
Lei Li ◽  
Wan Lin Zhou ◽  
Ghulam Hussain

Sing point incremental forming (SPIF) limit is much higher than the traditional processes. Currently, there are still no systematic theories and criterions to predict the limit. In this paper, the Oyane ductile fracture criterion is introduced to predict the forming limit of SPIF based on the stress-strain data by the finite element simulations. The predicted fracture initiation sites and the forming limit curve are consistent with the experiment results; further, the forming characteristic, stress state, local temperature are the main reasons of the higher forming limit in SPIF.


2007 ◽  
Vol 344 ◽  
pp. 511-518 ◽  
Author(s):  
Markus Bambach ◽  
M. Todorova ◽  
Gerhard Hirt

Asymmetric incremental sheet forming (AISF) is a relatively new manufacturing process for the production of low volumes of sheet metal parts. Forming is accomplished by the CNC controlled movements of a simple ball-headed tool that follows a 3D trajectory to gradually shape the sheet metal blank. Due to the local plastic deformation under the tool, there is almost no draw-in from the flange region to avoid thinning in the forming zone. As a consequence, sheet thinning limits the amount of bearable deformation, and thus the range of possible applications. Much attention has been given to the maximum strains that can be attained in AISF. Several authors have found that the forming limits are considerably higher than those obtained using a Nakazima test and that the forming limit curve is approximately a straight line (mostly having a slope of -1) in the stretching region of the FLD. Based on these findings they conclude that the “conventional” forming limit curves cannot be used for AISF and propose dedicated tests to record forming limit diagrams for AISF. Up to now, there is no standardised test and no evaluation procedure for the determination of FLCs for AISF. In the present paper, we start with an analysis of the range of strain states and strain paths that are covered by the various tests that can be found in the literature. This is accomplished by means of on-line deformation measurements using a stereovision system. From these measurements, necking and fracture limits are derived. It is found that the fracture limits can be described consistently by a straight line with negative slope. The necking limits seem to be highly dependent on the test shapes and forming parameters. It is concluded that standardisation in both testing conditions and the evaluation procedures is necessary, and that a forming limit curve does not seem to be an appropriate tool to predict the feasibility of a given part design.


2019 ◽  
Vol 55 (16) ◽  
pp. 47 ◽  
Author(s):  
YANG Zhuoyun ◽  
ZHAO Changcai ◽  
DONG Guojiang ◽  
CHEN Guang ◽  
ZHU Liangjin ◽  
...  

2014 ◽  
Vol 23 (8) ◽  
pp. 1189-1210 ◽  
Author(s):  
HS Liu ◽  
MW Fu

A modified ductile fracture criterion is proposed based on the traditional Ayada criterion and coded into the finite element simulation platform of VUMAT/ABAQUS for prediction and analysis of ductile fracture in metal plastic strain processes. In this modified ductile fracture criterion, stress triaxiality is taken into account, and more importantly, the exponential effect of the equivalent plastic strain on the damage behavior, which is generally ignored in other ductile fracture criteria, is also considered. The material related constants in the modified ductile fracture criterion are determined by tensile tests together with finite element simulations. The applicability and reliability of the ductile fracture criterion in ductile fracture prediction in two types of classic stress states, viz. shear stress, tensile stress in sheet metal forming, are investigated based on the deformation behavior and fracture occurrence in two case studies with two typical types of materials, i.e. Al 6061 and T10A. The materials have a wide range of plasticity. The simulation and experimental results verify the applicability and reliability of the developed ductile fracture criterion in prediction of the ductile fracture with and without necking in different stress states of plastic strain.


Sign in / Sign up

Export Citation Format

Share Document