ductile fracture criterion
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 30)

H-INDEX

20
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6638
Author(s):  
Tomasz Bulzak

In the process of cross-wedge rolling, axial-symmetric forgings are formed using wedge tools. These tools may be flat- or roll-shaped. This article presents two methods of cross-wedge rolling of rail axles, traditional and multi-wedge, as well as their advantages and disadvantages. Two cross-wedge rolling processes are modelled numerically using Simufact Forming. Numerical results are then verified by experiments performed on a flat wedge rolling mill. Results obtained with the two rolling methods are compared in terms of material fracture, force parameters, effective strain and thermal conditions during rolling. Results show that material fracture poses a serious problem in these rolling processes. It is found that the Cockcroft–Latham ductile fracture criterion does not predict material fracture correctly. Results demonstrate that the fracture of railway axles in cross-wedge rolling can be best predicted by the fracture criteria developed by Ayada, Brozzo, Ko, Rice and Tracey.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yuanyuan Chen ◽  
Huiping Qi ◽  
Yongtang Li ◽  
Lin Hua

The casting-rolling compound forming process of ring parts is an advanced plastic forming technology that has been developed due to the merits of high efficiency and energy and material saving. However, cracks often occur during the hot ring rolling process, especially at the edges of the ring parts, which severely affects the forming quality. To predict and try to avoid the occurrence of cracks in the casting-rolling compound forming process of ring parts, the high-temperature fracture behaviors of as-cast 42CrMo steel were investigated by thermodynamic experiment method. The high-temperature tensile tests were carried out using the Gleeble-3500D thermomechanical simulator at various temperatures and strain rates. Stress-strain curves and fracture morphology were examined, through which the sensitivity of stress to temperature and strain rate and the effect of dynamic recrystallization and cavity evolution on fracture were found. The law of critical fracture strains was analyzed, and the model of critical fracture strain as a function of temperature and strain rate was established. Based on Oyane criterion, the thermal ductile fracture criterion was established in conjunction with the model of critical fracture strain. By embedding this thermal damage model into the finite element (FE) model for hot ring rolling of an as-cast 42CrMo ring, the damage prediction for this process was realized, and the thermal ductile fracture criterion was proved to be reliable. From the FE results for hot ring rolling, mechanism of damage and fracture in the hot ring rolling process was analyzed. The damage threshold C f is small, and the damage ratio D is large at the top and bottom edges of the inner surface area of the ring, which have the greatest propensity to cracking in the course of hot ring rolling. This is of great significance in terms of improving the forming quality of ring parts in the casting-rolling compound forming process.


2021 ◽  
Vol 291 ◽  
pp. 116989
Author(s):  
Koji Yamane ◽  
Kazuhiro Shimoda ◽  
Koichi Kuroda ◽  
Shohei Kajikawa ◽  
Takashi Kuboki

Sign in / Sign up

Export Citation Format

Share Document