scholarly journals Building and Refining Protein Models within Cryo-electron Microscopy Density Maps Based on Homology Modeling and Multiscale Structure Refinement

2010 ◽  
Vol 397 (3) ◽  
pp. 835-851 ◽  
Author(s):  
Jiang Zhu ◽  
Lingpeng Cheng ◽  
Qin Fang ◽  
Z. Hong Zhou ◽  
Barry Honig
2020 ◽  
Author(s):  
Jing Cheng ◽  
Bufan Li ◽  
Long Si ◽  
Xinzheng Zhang

AbstractCryo-electron microscopy (cryo-EM) tomography is a powerful tool for in situ structure determination. However, this method requires the acquisition of tilt series, and its time consuming throughput of acquiring tilt series severely slows determination of in situ structures. By treating the electron densities of non-target protein as non-Gaussian distributed noise, we developed a new target function that greatly improves the efficiency of the recognition of the target protein in a single cryo-EM image without acquiring tilt series. Moreover, we developed a sorting function that effectively eliminates the false positive detection, which not only improves the resolution during the subsequent structure refinement procedure but also allows using homolog proteins as models to recognize the target protein. Together, we developed an in situ single particle analysis (isSPA) method. Our isSPA method was successfully applied to solve structures of glycoproteins on the surface of a non-icosahedral virus and Rubisco inside the carboxysome. The cryo-EM data from both samples were collected within 24 hours, thus allowing fast and simple structural determination in situ.


2020 ◽  
Vol 60 (5) ◽  
pp. 2644-2650 ◽  
Author(s):  
Salim Sazzed ◽  
Peter Scheible ◽  
Maytha Alshammari ◽  
Willy Wriggers ◽  
Jing He

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Christopher J. Gisriel ◽  
Jimin Wang ◽  
Gary W. Brudvig ◽  
Donald A. Bryant

AbstractThe accurate assignment of cofactors in cryo-electron microscopy maps is crucial in determining protein function. This is particularly true for chlorophylls (Chls), for which small structural differences lead to important functional differences. Recent cryo-electron microscopy structures of Chl-containing protein complexes exemplify the difficulties in distinguishing Chl b and Chl f from Chl a. We use these structures as examples to discuss general issues arising from local resolution differences, properties of electrostatic potential maps, and the chemical environment which must be considered to make accurate assignments. We offer suggestions for how to improve the reliability of such assignments.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 82 ◽  
Author(s):  
Eman Alnabati ◽  
Daisuke Kihara

Cryo-electron microscopy (cryo-EM) has now become a widely used technique for structure determination of macromolecular complexes. For modeling molecular structures from density maps of different resolutions, many algorithms have been developed. These algorithms can be categorized into rigid fitting, flexible fitting, and de novo modeling methods. It is also observed that machine learning (ML) techniques have been increasingly applied following the rapid progress of the ML field. Here, we review these different categories of macromolecule structure modeling methods and discuss their advances over time.


2018 ◽  
Vol 74 (1) ◽  
pp. 65-66
Author(s):  
Guray Kuzu ◽  
Ozlem Keskin ◽  
Ruth Nussinov ◽  
Attila Gursoy

A revised Table 6 and Supporting Information are provided for the article by Kuzuet al.[(2016),Acta Cryst.D72, 1137–1148].


2020 ◽  
Author(s):  
Jing Cheng ◽  
Bufan Li ◽  
Long Si ◽  
Xinzheng Zhang

Abstract Cryo-electron microscopy (cryo-EM) tomography is a powerful tool for in situ structure determination. However, this method requires the acquisition of tilt series, and its time consuming throughput of acquiring tilt series severely slows determination of in situ structures. By treating the electron densities of non-target protein as non-Gaussian distributed noise, we developed a new target function that greatly improves the efficiency of the recognition of the target protein in a single cryo-EM image without acquiring tilt series. Moreover, we developed a sorting function that effectively eliminates the false positive detection, which not only improves the resolution during the subsequent structure refinement procedure but also allows using homolog proteins as models to recognize the target protein. Together, we developed an in situ single particle analysis (isSPA) method. Our isSPA method was successfully applied to solve structures of glycoproteins on the surface of a non-icosahedral virus and Rubisco inside the carboxysome. The cryo-EM data from both samples were collected within 24 hours, thus allowing fast and simple structural determination in situ.


Sign in / Sign up

Export Citation Format

Share Document