scholarly journals Mechanisms of Integral Membrane Protein Insertion and Folding

2015 ◽  
Vol 427 (5) ◽  
pp. 999-1022 ◽  
Author(s):  
Florian Cymer ◽  
Gunnar von Heijne ◽  
Stephen H. White
2007 ◽  
Vol 189 (24) ◽  
pp. 8961-8972 ◽  
Author(s):  
Jijun Yuan ◽  
Gregory J. Phillips ◽  
Ross E. Dalbey

ABSTRACT YidC, a 60-kDa integral membrane protein, plays an important role in membrane protein insertion in bacteria. YidC can function together with the SecYEG machinery or operate independently as a membrane protein insertase. In this paper, we describe two new yidC mutants that lead to a cold-sensitive phenotype in bacterial cell growth. Both alleles impart a cold-sensitive phenotype and result from point mutations localized to the third transmembrane (TM3) segment of YidC, indicating that this region is crucial for YidC function. We found that the yidC(C423R) mutant confers a weak phenotype on membrane protein insertion while a yidC(P431L) mutant leads to a stronger phenotype. In both cases, the affected substrates include the Pf3 coat protein and ATP synthase F1Fo subunit c (FoC), while CyoA (the quinol binding subunit of the cytochrome bo3 quinol oxidase complex) and wild-type procoat are slightly affected or not affected in either cold-sensitive mutant. To determine if the different substrates require various levels of YidC activity for membrane insertion, we performed studies where YidC was depleted using an arabinose-dependent expression system. We found that −3M-PC-Lep (a construct with three negatively charged residues inserted into the middle of the procoat-Lep [PC-Lep] protein) and Pf3 P2 (a construct with the Lep P2 domain added at the C terminus of Pf3 coat) required the highest amount of YidC and that CyoA-N-P2 (a construct with the amino-terminal part of CyoA fused to the Lep P2 soluble domain) and PC-Lep required the least, while FoC required moderate YidC levels. Although the cold-sensitive mutations can preferentially affect one substrate over another, our results indicate that different substrates require different levels of YidC activity for membrane insertion. Finally, we obtained several intragenic suppressors that overcame the cold sensitivity of the C423R mutation. One pair of mutations suggests an interaction between TM2 and TM3 of YidC. The studies reveal the critical regions of the YidC protein and provide insight into the substrate profile of the YidC insertase.


2018 ◽  
Vol 32 (5) ◽  
pp. 2411-2421 ◽  
Author(s):  
Yanlong Xin ◽  
Yan Zhao ◽  
Jiangge Zheng ◽  
Haizhen Zhou ◽  
Xuejun Cai Zhang ◽  
...  

2000 ◽  
Vol 28 (4) ◽  
pp. 495-499 ◽  
Author(s):  
K. Tokatlidis ◽  
S. Vial ◽  
P. Luciano ◽  
M. Vergnolle ◽  
S. Clémence

The protein import pathway that targets proteins to the mitochondrial matrix has been extensively characterized in the past 15 years. Variations of this import pathway account for the sorting of proteins to other compartments as well, but the insertion of integral inner membrane proteins lacking a presequence is mediated by distinct translocation machinery. This consists of a complex of Tim9 and Tim10, two homologous, Zn2+-binding proteins that chaperone the passage of the hydrophobic precursor across the aqueous inter-membrane space. The precursor is then targeted to another, inner-membrane-bound, complex of at least five subunits that facilitates insertion. Biochemical and genetic experiments have identified the key components of this process; we are now starting to understand the molecular mechanism. This review highlights recent advances in this new membrane protein insertion pathway.


Sign in / Sign up

Export Citation Format

Share Document