thermotoga maritima
Recently Published Documents


TOTAL DOCUMENTS

701
(FIVE YEARS 76)

H-INDEX

54
(FIVE YEARS 4)

2021 ◽  
Author(s):  
James Birrell ◽  
Chris Furlan ◽  
Nipa Chongdar ◽  
Pooja Gupta ◽  
Wolfgang Lubitz ◽  
...  

Abstract Electron-bifurcation is a fundamental energy conservation mechanism in nature. The electron-bifurcating [FeFe] hydrogenase from Thermotoga maritima (HydABC) requires both NADH and ferredoxin to reduce protons generating hydrogen. The mechanism of electron-bifurcation in HydABC remains enigmatic primarily due to the lack of structural information. Here, we present a 2.3 Å electron cryo-microscopy structure of HydABC. The structure is a heterododecamer composed of two independent ‘halves’ each made of two strongly interacting HydABC heterotrimers electrically connected via a [4Fe-4S] cluster. A central electron transfer pathway connects the active sites for NADH oxidation and proton reduction. Symmetry expansion identified two conformations of a flexible iron-sulfur cluster domain: a “closed bridge” and an “open bridge” conformation, where a Zn2+ site may act as a “hinge” allowing domain movement. Based on these structural revelations, we propose two new mechanisms of electron-bifurcation in HydABC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Benjamin J. LaFrance ◽  
Caleb Cassidy-Amstutz ◽  
Robert J. Nichols ◽  
Luke M. Oltrogge ◽  
Eva Nogales ◽  
...  

AbstractBacterial nanocompartments, also known as encapsulins, are an emerging class of protein-based ‘organelles’ found in bacteria and archaea. Encapsulins are virus-like icosahedral particles comprising a ~ 25–50 nm shell surrounding a specific cargo enzyme. Compartmentalization is thought to create a unique chemical environment to facilitate catalysis and isolate toxic intermediates. Many questions regarding nanocompartment structure–function remain unanswered, including how shell symmetry dictates cargo loading and to what extent the shell facilitates enzymatic activity. Here, we explore these questions using the model Thermotoga maritima nanocompartment known to encapsulate a redox-active ferritin-like protein. Biochemical analysis revealed the encapsulin shell to possess a flavin binding site located at the interface between capsomere subunits, suggesting the shell may play a direct and active role in the function of the encapsulated cargo. Furthermore, we used cryo-EM to show that cargo proteins use a form of symmetry-matching to facilitate encapsulation and define stoichiometry. In the case of the Thermotoga maritima encapsulin, the decameric cargo protein with fivefold symmetry preferentially binds to the pentameric-axis of the icosahedral shell. Taken together, these observations suggest the shell is not simply a passive barrier—it also plays a significant role in the structure and function of the cargo enzyme.


2021 ◽  
Author(s):  
Sudhanshu Gautam ◽  
Avisek Mahapa ◽  
Lahari Yeramala ◽  
Apoorv Gandhi ◽  
Sushma Krishnan ◽  
...  

In bacteria, cyclic-di-nucleotide based second messengers regulate various physiological processes including the stress response. For the past few decades, cyclic diadenosine monophosphate (c-di-AMP) is emerging as a crucial second messenger in bacterial world. It being an essential molecule, is implicated in fatty acid metabolism, antibiotic resistance, biofilm formation, virulence and activates the cytosolic pathway of innate immunity in host cell. The level of c-di-AMP is maintained within the cell by the action of two opposing enzymes, namely diadenylate cyclases and phosphodiesterases. However, such kind of c-di-AMP modulation remains to be explored in Mycobacterium smegmatis. Here, we systematically investigate the c-di-AMP synthase (MsDisA) and a hydrolase (MsPDE) from M. smegmatis at different pHs and osmolytic conditions. Our biochemical assays showed that the MsDisA activity is enhanced during the alkaline stress and c-di-AMP is readily produced without any intermediates. At pH 9.4, the MsDisA promoter activity increases significantly, further strengthening this observation. However, under physiological conditions, the activity of MsDisA is moderate with the formation of intermediates. We also observe that the size of MsDisA is significantly increased upon incubation with substrate. To further get deep insights into the structural characteristics, we report a 3.8 Å cryo-EM structure of the MsDisA protein, distinct from the earlier reported structure of DisA from Thermotoga maritima. The domain mutant experiments prove that the N-terminal minimal region can form a functional octamer. Thus, our results reveal how mycobacterial c-di-AMP is biochemically and structurally regulated in response to different environments. Keywords: Mycobacteria, second messengers, stress response, Cyclic-di-AMP, MsDisA, MsPDE, Cryo-EM


FEBS Letters ◽  
2021 ◽  
Author(s):  
Tetsuya Miyamoto ◽  
Yasuaki Saitoh ◽  
Masumi Katane ◽  
Masae Sekine ◽  
Kumiko Sakai‐Kato ◽  
...  

Author(s):  
Diana X. Sahonero-Canavesi ◽  
Laura Villanueva ◽  
Nicole J. Bale ◽  
Jade Bosviel ◽  
Michel Koenen ◽  
...  

Membrane-spanning lipids are present in a wide variety of archaea but they are rarely in bacteria. Nevertheless, the (hyper)thermophilic members of the order Thermotogales harbor tetraester, tetraether, and mixed ether/ester membrane-spanning lipids mostly composed of core lipids derived from diabolic acids, C 30, C 32 and C 34 dicarboxylic acids with two adjacent mid-chain methyl substituents. Lipid analysis of Thermotoga maritima across growth phases revealed a decrease of the relative abundance of fatty acids together with an increase of diabolic acids with independence of growth temperature. We also identified isomers of C 30 and C 32 diabolic acids, i.e. dicarboxylic acids with only one methyl group at C-15. Their distribution suggests they are products of the condensation reaction but preferably produced when the length of the acyl chains is not optimal. In comparison with growth at the optimal temperature of 80°C, an increase of glycerol ether-derived lipids was observed at 55°C. Besides, our analysis only detected diabolic acid-containing intact polar lipids with phosphoglycerol (PG) headgroups. Considering these findings, we hypothesize a biosynthetic pathway for the synthesis of membrane-spanning lipids based on PG polar lipid formation, suggesting that the protein catalyzing this process could be a membrane protein. We also identified, by genomic and protein domain analyses, a gene coding for a putative plasmalogen synthase homologue in T. maritima , which is also present in other bacteria producing sn 1-alkyl ether lipids but not plasmalogens, suggesting it could be involved in the conversion of the ester to ether bond in the diabolic acids bound in membrane-spanning lipids. Importance Membrane-spanning lipids are unique compounds found in most archaeal membranes, but they are also present in specific bacterial groups like the Thermotogales. The synthesis and physiological role of membrane-spanning lipids in bacteria represent an evolutionary and biochemical open question that points to the differentiation of the membrane lipids composition. Understanding the formation of membrane-spanning lipids is crucial to solving this question and identifying the enzymatic and biochemical mechanism performing this procedure. In the present work, we found changes at the core lipid level, and we propose that the growth phase drives the biosynthesis of these lipids rather than temperature. Our results identified physiological conditions influencing the membrane-spanning lipids biosynthetic process which can further clarify the pathway leading to the biosynthesis of these compounds.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6586
Author(s):  
Rodrigo A. Arreola-Barroso ◽  
Alexey Llopiz ◽  
Leticia Olvera ◽  
Gloria Saab-Rincón

The proteins within the CAZy glycoside hydrolase family GH13 catalyze the hydrolysis of polysaccharides such as glycogen and starch. Many of these enzymes also perform transglycosylation in various degrees, ranging from secondary to predominant reactions. Identifying structural determinants associated with GH13 family reaction specificity is key to modifying and designing enzymes with increased specificity towards individual reactions for further applications in industrial, chemical, or biomedical fields. This work proposes a computational approach for decoding the determinant structural composition defining the reaction specificity. This method is based on the conservation of coevolving residues in spatial contacts associated with reaction specificity. To evaluate the algorithm, mutants of α-amylase (TmAmyA) and glucanotransferase (TmGTase) from Thermotoga maritima were constructed to modify the reaction specificity. The K98P/D99A/H222Q variant from TmAmyA doubled the transglycosydation/hydrolysis (T/H) ratio while the M279N variant from TmGTase increased the hydrolysis/transglycosidation ratio five-fold. Molecular dynamic simulations of the variants indicated changes in flexibility that can account for the modified T/H ratio. An essential contribution of the presented computational approach is its capacity to identify residues outside of the active center that affect the reaction specificity.


2021 ◽  
Author(s):  
Chris Furlan ◽  
Nipa Chongdar ◽  
Pooja Gupta ◽  
Wolfgang Lubitz ◽  
Hideaki Ogata ◽  
...  

Electron-bifurcation is a fundamental energy conservation mechanism in nature. The electron-bifurcating [FeFe] hydrogenase from Thermotoga maritima (HydABC) requires both NADH and ferredoxin to reduce protons generating hydrogen. The mechanism of electron-bifurcation in HydABC remains enigmatic primarily due to the lack of structural information. Here, we present a 2.3 Å electron cryo-microscopy structure of HydABC. The structure is a heterododecamer composed of two independent ‘halves’ each made of two strongly interacting HydABC trimers electrically connected via a [4Fe-4S] cluster, forming a bus-bar system. Symmetry expansion identified two conformations: a “closed bridge” and an “open bridge” conformation, where a Zn2+ site may act as a “hinge” allowing domain movement. Based on these structural revelations, we propose two new mechanisms of electron-bifurcation in HydABC.


2021 ◽  
Author(s):  
Zachary Maschmann ◽  
Siddarth Chandrasekaran ◽  
Brian R Crane

In bacterial chemotaxis chemoreceptors regulate the cytosolic dimeric histidine kinase CheA. To test the role that interdomain linkers play in CheA regulation the linkers that connect the P4 kinase domain to the P3 dimerization domain (L3) and the P5 regulatory domain (L4) were extended and altered in variants of Thermotoga maritima (Tm) CheA. Flexible extensions of the L3 and L4 linkers in CheA-LV1 (linker variant 1) allow for a well-folded kinase domain that retains WT-like binding affinities for nucleotide and normal interactions with the receptor-coupling protein CheW. However, CheA-LV1 autophosphorylation activity registers ~50-fold lower compared to wild-type. Formation of the CheA-LV1 / CheA WT heterodimer fails to rescue CheA-LV1 autophosphorylation and instead reduces the activity of the WT subunit. Neither CheA WT nor CheA-LV1 can phosphorylate P1 in a CheA dimer that contains a single P4 domain. Rescue of autophosphorylation activity in variants with a poly-alanine L3 or an L3 that maintains a heptad repeat suggest that positioning and conformational transitions of P4 depend on L3 assuming helical structure. Pulse dipolar ESR measurements indicate that the CheA-LV1 P4 domains are in close proximity whereas broader distributions in other variants correlate with increased activity. CheA-LV1 has a substantially larger hydrodynamic radius than does CheA WT by SAXS, despite the P4 domains assuming a closed, inhibited conformation. These results explain negative cooperativity in CheA nucleotide binding, demonstrate coupling between P4 disposition and P1 / P2 dynamics and underscore the importance of P4-P4 interactions and an L3 a- helix in CheA activity and regulation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaorong Zhang ◽  
Yu Liu ◽  
Bowen Zheng ◽  
Jiachen Zang ◽  
Chenyan Lv ◽  
...  

AbstractAlthough various artificial protein nanoarchitectures have been constructed, controlling the transformation between different protein assemblies has largely been unexplored. Here, we describe an approach to realize the self-assembly transformation of dimeric building blocks by adjusting their geometric arrangement. Thermotoga maritima ferritin (TmFtn) naturally occurs as a dimer; twelve of these dimers interact with each other in a head-to-side manner to generate 24-meric hollow protein nanocage in the presence of Ca2+ or PEG. By tuning two contiguous dimeric proteins to interact in a fully or partially side-by-side fashion through protein interface redesign, we can render the self-assembly transformation of such dimeric building blocks from the protein nanocage to filament, nanorod and nanoribbon in response to multiple external stimuli. We show similar dimeric protein building blocks can generate three kinds of protein materials in a manner that highly resembles natural pentamer building blocks from viral capsids that form different protein assemblies.


Sign in / Sign up

Export Citation Format

Share Document