scholarly journals Allosteric regulation of 3CL protease of SARS-CoV-2 and SARS-CoV observed in the crystal structure ensemble

2021 ◽  
pp. 167324
Author(s):  
Akinori Kidera ◽  
Kei Moritsugu ◽  
Toru Ekimoto ◽  
Mitsunori Ikeguchi
2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Tsan‐Wen Lu ◽  
Jian Wu ◽  
Lalima Ahuja ◽  
Phillip Aoto ◽  
Nicholas Sun ◽  
...  

2007 ◽  
Vol 369 (3) ◽  
pp. 794-811 ◽  
Author(s):  
Mi-Kyung Yun ◽  
Amanda Nourse ◽  
Stephen W. White ◽  
Charles O. Rock ◽  
Richard J. Heath

2014 ◽  
Vol 70 (2) ◽  
pp. 218-230 ◽  
Author(s):  
Alan Yueh-Luen Lee ◽  
Yu-Da Chen ◽  
Yu-Yung Chang ◽  
Yu-Ching Lin ◽  
Chi-Fon Chang ◽  
...  

Lon belongs to a unique group of AAA+proteases that bind DNA. However, the DNA-mediated regulation of Lon remains elusive. Here, the crystal structure of the α subdomain of the Lon protease fromBrevibacillus thermoruber(Bt-Lon) is presented, together with biochemical data, and the DNA-binding mode is delineated, showing that Arg518, Arg557 and Arg566 play a crucial role in DNA binding. Electrostatic interactions contributed by arginine residues in the AAA+module are suggested to be important to DNA binding and allosteric regulation of enzymatic activities. Intriguingly, Arg557, which directly binds DNA in the α subdomain, has a dual role in the negative regulation of ATPase stimulation by DNA and in the domain–domain communication in allosteric regulation of Bt-Lon by substrate. In conclusion, structural and biochemical evidence is provided to show that electrostatic interaction in the AAA+module is important for DNA binding by Lon and allosteric regulation of its enzymatic activities by DNA and substrate.


2021 ◽  
Author(s):  
Akinori Kidera ◽  
Kei Moritsugu ◽  
Toru Ekimoto ◽  
Mitsunori Ikeguchi

The 3C-like protease (3CLpro) of SARS-CoV-2 is a potential therapeutic target for COVID-19. Importantly, it has an abundance of structural information solved as a complex with various drug candidate compounds. Collecting these crystal structures (83 Protein Data Bank (PDB) entries) together with those of the highly homologous 3CLpro of SARS-CoV (101 PDB entries), we constructed the crystal structure ensemble of 3CLpro to analyze the dynamic regulation of its catalytic function. The structural dynamics of the 3CLpro dimer observed in the ensemble were characterized by the motions of four separate loops (the C-loop, E-loop, H-loop, and Linker) and the C-terminal domain III on the rigid core of the chymotrypsin fold. Among the four moving loops, the C-loop (also known as the oxyanion binding loop) causes the order (active)-disorder (collapsed) transition, which is regulated cooperatively by five hydrogen bonds made with the surrounding residues. The C-loop, E-loop, and Linker constitute the major ligand binding sites, which consist of a limited variety of binding residues including the substrate binding subsites. Ligand binding causes a ligand size dependent conformational change to the E-loop and Linker, which further stabilize the C-loop via the hydrogen bond between the C-loop and E-loop. The T285A mutation from SARS-CoV 3CLpro to SARS-CoV-2 3CLpro significantly closes the interface of the domain III dimer and allosterically stabilizes the active conformation of the C-loop via hydrogen bonds with Ser1 and Gly2; thus, SARS-CoV-2 3CLpro seems to have increased activity relative to that of SARS-CoV 3CLpro.


2016 ◽  
Vol 113 (9) ◽  
pp. 2394-2399 ◽  
Author(s):  
Emilia C. Arturo ◽  
Kushol Gupta ◽  
Annie Héroux ◽  
Linda Stith ◽  
Penelope J. Cross ◽  
...  

Improved understanding of the relationship among structure, dynamics, and function for the enzyme phenylalanine hydroxylase (PAH) can lead to needed new therapies for phenylketonuria, the most common inborn error of amino acid metabolism. PAH is a multidomain homo-multimeric protein whose conformation and multimerization properties respond to allosteric activation by the substrate phenylalanine (Phe); the allosteric regulation is necessary to maintain Phe below neurotoxic levels. A recently introduced model for allosteric regulation of PAH involves major domain motions and architecturally distinct PAH tetramers [Jaffe EK, Stith L, Lawrence SH, Andrake M, Dunbrack RL, Jr (2013) Arch Biochem Biophys 530(2):73–82]. Herein, we present, to our knowledge, the first X-ray crystal structure for a full-length mammalian (rat) PAH in an autoinhibited conformation. Chromatographic isolation of a monodisperse tetrameric PAH, in the absence of Phe, facilitated determination of the 2.9 Å crystal structure. The structure of full-length PAH supersedes a composite homology model that had been used extensively to rationalize phenylketonuria genotype–phenotype relationships. Small-angle X-ray scattering (SAXS) confirms that this tetramer, which dominates in the absence of Phe, is different from a Phe-stabilized allosterically activated PAH tetramer. The lack of structural detail for activated PAH remains a barrier to complete understanding of phenylketonuria genotype–phenotype relationships. Nevertheless, the use of SAXS and X-ray crystallography together to inspect PAH structure provides, to our knowledge, the first complete view of the enzyme in a tetrameric form that was not possible with prior partial crystal structures, and facilitates interpretation of a wealth of biochemical and structural data that was hitherto impossible to evaluate.


1993 ◽  
Vol 2 (4) ◽  
pp. 597-619 ◽  
Author(s):  
Bart Hazes ◽  
Kor H. Kalk ◽  
WIM G.J. Hol ◽  
Karen A. Magnus ◽  
Celia Bonaventura ◽  
...  

2018 ◽  
Vol 475 (14) ◽  
pp. 2395-2416 ◽  
Author(s):  
Dirk Maurer ◽  
Bernhard Lohkamp ◽  
Michael Krumpel ◽  
Mikael Widersten ◽  
Doreen Dobritzsch

β-Ureidopropionase (βUP) catalyzes the third step of the reductive pyrimidine catabolic pathway responsible for breakdown of uracil-, thymine- and pyrimidine-based antimetabolites such as 5-fluorouracil. Nitrilase-like βUPs use a tetrad of conserved residues (Cys233, Lys196, Glu119 and Glu207) for catalysis and occur in a variety of oligomeric states. Positive co-operativity toward the substrate N-carbamoyl-β-alanine and an oligomerization-dependent mechanism of substrate activation and product inhibition have been reported for the enzymes from some species but not others. Here, the activity of recombinant human βUP is shown to be similarly regulated by substrate and product, but in a pH-dependent manner. Existing as a homodimer at pH 9, the enzyme increasingly associates to form octamers and larger oligomers with decreasing pH. Only at physiological pH is the enzyme responsive to effector binding, with N-carbamoyl-β-alanine causing association to more active higher molecular mass species, and β-alanine dissociation to inactive dimers. The parallel between the pH and ligand-induced effects suggests that protonation state changes play a crucial role in the allosteric regulation mechanism. Disruption of dimer–dimer interfaces by site-directed mutagenesis generated dimeric, inactive enzyme variants. The crystal structure of the T299C variant refined to 2.08 Å resolution revealed high structural conservation between human and fruit fly βUP, and supports the hypothesis that enzyme activation by oligomer assembly involves ordering of loop regions forming the entrance to the active site at the dimer–dimer interface, effectively positioning the catalytically important Glu207 in the active site.


Sign in / Sign up

Export Citation Format

Share Document