negative regulation
Recently Published Documents


TOTAL DOCUMENTS

2212
(FIVE YEARS 293)

H-INDEX

131
(FIVE YEARS 9)

2022 ◽  
Vol 12 (2) ◽  
pp. 346-351
Author(s):  
Dong-Yang Guo ◽  
Zhou-Xin Yang ◽  
Guo-Long Cai ◽  
Ling-Zhi Shen ◽  
Ying-Xing Yue ◽  
...  

Background: Lipopolysaccharide (LPS) desensitization, which is characterized by hyporesponsiveness and a form of immunosuppression, is important in the negative regulation of responses to LPS and inflammatory disease such as sepsis. However, effect of IL-33 in the desensitization to LPS remains unclear. Methods: We used RNA-sequencing technology to analyze changes in mRNA in bone-marrow-derived macrophages (BMDMs) stimulated with LPS. Changes in expression and secretion of inflammatory cytokines were detected by qPCR and ELISA, respectively. Mechanisms were further studied through p65 phosphorylation detection. Results: IL-33 expression was significantly increased in LPS-treated macrophages, indicating its involvement in LPS-induced inflammation. Exogenous IL-33 increased the inflammatory response and ameliorated LPS desensitization by increasing the secretion of proinflammatory cytokines. It also activated p65 phosphorylation in resistant cells. Conclusion: IL-33 can enhance the inflammatory response induced by LPS and ameliorate LPS desensitization possibly by activating the NF-κB pathway in mouse macrophages.


2022 ◽  
Vol 12 ◽  
Author(s):  
T. V. Divya ◽  
Celin Acharya

Metallothioneins (MTs) are cysteine-rich, metal-sequestering cytosolic proteins that play a key role in maintaining metal homeostasis and detoxification. We had previously characterized NmtA, a MT from the heterocystous, nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120 and demonstrated its role in providing protection against cadmium toxicity. In this study, we illustrate the regulation of Anabaena NmtA by AzuR (Alr0831) belonging to the SmtB/ArsR family of transcriptional repressors. There is currently no experimental evidence for any functional role of AzuR. It is observed that azuR is located within the znuABC operon but in the opposite orientation and remotely away from the nmtA locus. Sequence analysis of AzuR revealed a high degree of sequence identity with Synechococcus SmtB and a distinct α5 metal binding site similar to that of SmtB. In order to characterize AzuR, we overexpressed it in Escherichia coli and purified it by chitin affinity chromatography. Far-UV circular dichroism spectroscopy indicated that the recombinant AzuR protein possessed a properly folded structure. Glutaraldehyde cross-linking and size-exclusion chromatography revealed that AzuR exists as a dimer of ∼28 kDa in solution. Analysis of its putative promoter region [100 bp upstream of nmtA open reading frame (ORF)] identified the presence of a 12–2–12 imperfect inverted repeat as the cis-acting element important for repressor binding. Electrophoretic mobility shift assays (EMSAs) showed concentration-dependent binding of recombinant dimeric AzuR with the promoter indicating that NmtA is indeed a regulatory target of AzuR. Binding of AzuR to DNA was disrupted in the presence of metal ions like Zn2+, Cd2+, Cu2+, Co2+, Ni2+, Pb2+, and Mn2+. The metal-dependent dissociation of protein–DNA complexes suggested the negative regulation of metal-inducible nmtA expression by AzuR. Overexpression of azuR in its native strain Anabaena 7120 enhanced the susceptibility to cadmium stress significantly. Overall, we propose a negative regulation of Anabaena MT by an α5 SmtB/ArsR metalloregulator AzuR.


Author(s):  
S. Randal Voss ◽  
Jeramiah J. Smith ◽  
Raissa F. Cecil ◽  
Mirindi Kabangu ◽  
Timothy J. Duerr ◽  
...  

New patterns of gene expression are enacted and regulated during tissue regeneration. Histone deacetylases (HDACs) regulate gene expression by removing acetylated lysine residues from histones and proteins that function directly or indirectly in transcriptional regulation. Previously we showed that romidepsin, an FDA-approved HDAC inhibitor, potently blocks axolotl embryo tail regeneration by altering initial transcriptional responses to injury. Here, we report on the concentration-dependent effect of romidepsin on transcription and regeneration outcome, introducing an experimental and conceptual framework for investigating small molecule mechanisms of action. A range of romidepsin concentrations (0–10 μM) were administered from 0 to 6 or 0 to 12 h post amputation (HPA) and distal tail tip tissue was collected for gene expression analysis. Above a threshold concentration, romidepsin potently inhibited regeneration. Sigmoidal and biphasic transcription response curve modeling identified genes with inflection points aligning to the threshold concentration defining regenerative failure verses success. Regeneration inhibitory concentrations of romidepsin increased and decreased the expression of key genes. Genes that associate with oxidative stress, negative regulation of cell signaling, negative regulation of cell cycle progression, and cellular differentiation were increased, while genes that are typically up-regulated during appendage regeneration were decreased, including genes expressed by fibroblast-like progenitor cells. Using single-nuclei RNA-Seq at 6 HPA, we found that key genes were altered by romidepin in the same direction across multiple cell types. Our results implicate HDAC activity as a transcriptional mechanism that operates across cell types to regulate the alternative expression of genes that associate with regenerative success versus failure outcomes.


2021 ◽  
Author(s):  
Matthew G Field ◽  
Jeffim N Kuznetsoff ◽  
Michelle Zhang ◽  
James J Dollar ◽  
Michael A Durante ◽  
...  

Retinoblastoma (Rb) is a deadly childhood eye cancer that is classically initiated by inactivation of the RB1 tumor suppressor. Clinical management continues to rely on nonspecific chemotherapeutic agents that are associated with treatment resistance and toxicity. Here, we analyzed 103 whole exomes, 16 whole transcriptomes, 5 single-cell transcriptomes, and 4 whole genomes from primary Rb tumors to identify novel Rb dependencies. Several recurrent genomic aberrations implicate estrogen-related receptor gamma (ESRRG) in Rb pathogenesis. RB1 directly interacts with and inhibits ESRRG, and RB1 loss uncouples ESRRG from negative regulation. ESRRG regulates genes involved in retinogenesis and oxygen metabolism in Rb cells. ESRRG is preferentially expressed in hypoxic Rb cells in vivo. Depletion or inhibition of ESRRG causes marked Rb cell death which is exacerbated in hypoxia. These findings reveal a novel dependency of Rb cells on ESRRG, and they implicate ESRRG as a potential therapeutic vulnerability in Rb.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiao Man Wu ◽  
Hong Fang ◽  
Jie Zhang ◽  
Yong Hong Bi ◽  
Ming Xian Chang

Histone H2A is a nuclear molecule tightly associated in the form of the nucleosome. Our previous studies have demonstrated the antibacterial property of piscine H2A variants against gram-negative bacteria Edwardsiella piscicida and Gram-positive bacteria Streptococcus agalactiae. In this study, we show the function and mechanism of piscine H2A in the negative regulation of RLR signaling pathway and host innate immune response against spring viremia of carp virus (SVCV) infection. SVCV infection significantly inhibits the expression of histone H2A during an early stage of infection, but induces the expression of histone H2A during the late stage of infection such as at 48 and 72 hpi. Under normal physiological conditions, histone H2A is nuclear-localized. However, SVCV infection promotes the migration of histone H2A from the nucleus to the cytoplasm. The in vivo studies revealed that histone H2A overexpression led to the increased expression of SVCV gene and decreased survival rate. The overexpression of histone H2A also significantly impaired the expression levels of those genes involved in RLR antiviral signaling pathway. Furthermore, histone H2A targeted TBK1 and IRF3 to promote their protein degradation via the lysosomal pathway and impair the formation of TBK1-IRF3 functional complex. Importantly, histone H2A completely abolished TBK1-mediated antiviral activity and enormously impaired the protein expression of IRF3, especially nuclear IRF3. Further analysis demonstrated that the inhibition of histone H2A nuclear/cytoplasmic trafficking could relieve the protein degradation of TBK1 and IRF3, and blocked the negative regulation of histone H2A on the SVCV infection. Collectively, our results suggest that histone H2A nuclear/cytoplasmic trafficking is essential for negative regulation of RLR signaling pathway and antiviral immune response in response to SVCV infection.


Author(s):  
Dheerendra Pratap Mall ◽  
Subham Basu ◽  
Koushik Ghosh ◽  
Nidhi Kumari ◽  
Abhishake Lahiri ◽  
...  

Although large number of recent studies indicate strong association of FKBP5 (aka FKBP51) functions with various stress-related psychiatric disorder, the overall mechanisms are poorly understood. Beyond a few studies indicating its functions in regulating glucocorticoid receptor-, and AKT-signalling pathways, other functional roles (if any) are unclear. In this study, we report an anti-proliferative role of human FKBP5 through negative regulation of expression of proliferation-related genes. Mechanistically, we show that, owing to same region of interaction on CDK9, human FKBP5 directly competes with CyclinT1 for functional P-TEFb complex formation. In vitro biochemical coupled with cell-based assays, showed strong negative effect of FKBP5 on P-TEFb-mediated phosphorylation of diverse substrates. Consistently, FKBP5 knockdown showed enhanced P-TEFb complex formation leading to increased global RNA polymerase II CTD phosphorylation and expression of proliferation-related genes and subsequent proliferation. Thus, our results show an important role of FKBP5 in negative regulation of P-TEFb functions within mammalian cells.


Sign in / Sign up

Export Citation Format

Share Document