scholarly journals A strain gradient plasticity model of porous single crystal ductile fracture

Author(s):  
Jean-Michel Scherer ◽  
Jacques Besson ◽  
Samuel Forest ◽  
Jérémy Hure ◽  
Benoît Tanguy
2015 ◽  
Vol 82 (7) ◽  
Author(s):  
M. I. Baskes ◽  
M. Ortiz

We explore whether the continuum scaling behavior of the fracture energy of metals extends down to the atomistic level. We use an embedded atom method (EAM) model of Ni, thus bypassing the need to model strain-gradient plasticity at the continuum level. The calculations are performed with a number of different 3D periodic size cells using standard molecular dynamics (MD) techniques. A void nucleus of a single vacancy is placed in each cell and the cell is then expanded through repeated NVT MD increments. For each displacement, we then determine which cell size has the lowest energy. The optimal cell size and energy bear a power-law relation to the opening displacement that is consistent with continuum estimates based on strain-gradient plasticity (Fokoua et al., 2014, “Optimal Scaling in Solids Undergoing Ductile Fracture by Void Sheet Formation,” Arch. Ration. Mech. Anal. (in press); Fokoua et al., 2014, “Optimal Scaling Laws for Ductile Fracture Derived From Strain-Gradient Microplasticity,” J. Mech. Phys. Solids, 62, pp. 295–311). The persistence of power-law scaling of the fracture energy down to the atomistic level is remarkable.


2005 ◽  
Vol 20 (11) ◽  
pp. 3150-3156
Author(s):  
Linmao Qian ◽  
Hui Yang ◽  
Minhao Zhu ◽  
Zhongrong Zhou

The indentation size effect of pure iron samples with various pre-plastic tensile strains has been experimentally investigated and analyzed. With the increase in the strain, the indentation size effect of iron samples becomes weak, accompanied by the multiplication of the statistically stored dislocations. All of the hardness (H) versus indentation depth (h) curves fit the strain-gradient plasticity model for indentation of Nix and Gao well. Two fitting parameters, the hardness in the limit of infinite depth (H0) and the characteristic length (h*), were obtained for each curve. The hardness (H0) of iron samples can also be estimated as the microhardness (H) at a very large depth, h ≅ 10h*. Both the fitted H0 and the measured H0′ increase linearly with the tensile yield stress σy of iron samples, indicating a dependence of H0 on the statistically stored dislocation density through σy. Furthermore, 1/√h* shows a linear increase with the tensile yield stress σy, which also agrees qualitatively with the general prediction of the Nix and Gao theory. Therefore, our experiments and analysis demonstrate that the strain-gradient plasticity model for indentation of Nix and Gao can interpret the indentation size effect with satisfied precision.


2002 ◽  
Vol 750 ◽  
Author(s):  
A. A. Elmustafa ◽  
J. Lou ◽  
O. Adewoye ◽  
W. O. Soboyejo ◽  
D. S. Stone

ABSTRACTThis paper examines the effects of stacking fault energy on the micro- and nano-indentation behavior of face-centered-cubic thin films. These include: LIGA nickel MEMS structures, alpha brass, copper and high purity aluminum. The measured hardness are then fitted to a strain gradient plasticity model based on the Taylor dislocation hardening model. Hardness is shown to exhibit a size dependence with different characteristic slopes in the micron and nano-scale regimes. Deep indents are shown to exhibit classical linear behavior. However, shallow indents exhibit an abrupt decrease in slope (almost by a factor of 10), giving rise to a bi-linear behavior. Furthermore, as the gradients become less sharp, the trends in the nano-hardness data become similar to those of the microhardness data predicted by the strain gradient plasticity model. Finally, the effects of stacking fault energy are then discussed within the context of cross-slip and hardening associated with Shockly partials.


Sign in / Sign up

Export Citation Format

Share Document