Bilinear Behavior in the Indentation Size Effect: A Consequence of Strain Gradient Plasticity

2002 ◽  
Vol 750 ◽  
Author(s):  
A. A. Elmustafa ◽  
J. Lou ◽  
O. Adewoye ◽  
W. O. Soboyejo ◽  
D. S. Stone

ABSTRACTThis paper examines the effects of stacking fault energy on the micro- and nano-indentation behavior of face-centered-cubic thin films. These include: LIGA nickel MEMS structures, alpha brass, copper and high purity aluminum. The measured hardness are then fitted to a strain gradient plasticity model based on the Taylor dislocation hardening model. Hardness is shown to exhibit a size dependence with different characteristic slopes in the micron and nano-scale regimes. Deep indents are shown to exhibit classical linear behavior. However, shallow indents exhibit an abrupt decrease in slope (almost by a factor of 10), giving rise to a bi-linear behavior. Furthermore, as the gradients become less sharp, the trends in the nano-hardness data become similar to those of the microhardness data predicted by the strain gradient plasticity model. Finally, the effects of stacking fault energy are then discussed within the context of cross-slip and hardening associated with Shockly partials.

2008 ◽  
Vol 591-593 ◽  
pp. 708-711 ◽  
Author(s):  
Marcos Flavio de Campos

The Stacking fault energy (SFE) is an important parameter for metals and alloys. The plastic deformation behavior of face centered cubic (FCC) metals and alloys is directly related to the SFE values. The several methods for determining SFE are critically discussed. The values reported in the 1960s and early 1970s are, in general, 20-30% overestimated. The node dislocation method, due to Whelan, overestimates the SFE. The method based on the critical resolved shear stress is not reliable. The most accurate method is the direct observation of dissociated partials by weak beam in TEM or using HREM (High resolution electron microscopy). Indirect methods based in X-Ray Diffraction and texture may provide reasonable estimates since reliable SFE values of reference metals are available. Selected SFE values for Ni, Cu, Ag, Cu and Al are presented.


Author(s):  
P. C. J. Gallagher

Stacking faults are an important substructural feature of many materials, and have been widely studied in layer structures (e.g. talc) and in crystals with hexagonal and face centered cubic structure. Particular emphasis has been placed on the study of faulted defects in f.c.c. alloys, since the width of the band of fault between dissociated partial dislocations has a major influence on mechanical properties.Under conditions of elastic equilibrium the degree of dissociation reflects the balance of the repulsive force between the partials bounding the fault, and the attractive force associated with the need to minimize the energy arising from the misfits in stacking sequence. Examples of two of the faulted defects which can be used to determine this stacking fault energy, Υ, are shown in Fig. 1. Intrinsically faulted extended nodes (as at A) have been widely used to determine Υ, and examples will be shown in several Cu and Ag base alloys of differing stacking fault energy. The defect at B contains both extrinsic and intrinsic faulting, and readily enables determination of both extrinsic and intrinsic fault energies.


2018 ◽  
Vol 93 ◽  
pp. 269-273 ◽  
Author(s):  
S.F. Liu ◽  
Y. Wu ◽  
H.T. Wang ◽  
J.Y. He ◽  
J.B. Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document