Validity and Reliability of an Inertial Measurement Unit–based 3-Dimensional Angular Measurement of Cervical Range of Motion

2019 ◽  
Vol 42 (1) ◽  
pp. 75-81 ◽  
Author(s):  
Tae-Lim Yoon ◽  
Han-Na Kim ◽  
Ji-Hyun Min
2017 ◽  
Vol 38 (1) ◽  
pp. 56-71
Author(s):  
Juhyuk Yim ◽  
Hyunho Kim ◽  
Young-Jae Park ◽  
Young-Bae Park

Author(s):  
Steffen Held ◽  
Ludwig Rappelt ◽  
Jan-Philip Deutsch ◽  
Lars Donath

The accurate assessment of the mean concentric barbell velocity (MCV) and its displacement are crucial aspects of resistance training. Therefore, the validity and reliability indicators of an easy-to-use inertial measurement unit (VmaxPro®) were examined. Nineteen trained males (23.1 ± 3.2 years, 1.78 ± 0.08 m, 75.8 ± 9.8 kg; Squat 1-Repetition maximum (1RM): 114.8 ± 24.5 kg) performed squats and hip thrusts (3–5 sets, 30 repetitions total, 75% 1RM) on two separate days. The MCV and displacement were simultaneously measured using VmaxPro® and a linear position transducer (Speed4Lift®). Good to excellent intraclass correlation coefficients (0.91 < ICC < 0.96) with a small systematic bias (p < 0.001; ηp2 < 0.50) for squats (0.01 ± 0.04 m·s−1) and hip thrusts (0.01 ± 0.05 m·s−1) and a low limit of agreement (LoA < 0.12 m·s−1) indicated an acceptable validity. The within- and between-day reliability of the MCV revealed good ICCs (0.55 < ICC < 0.91) and a low LoA (<0.16 m·s−1). Although the displacement revealed a systematic bias during squats (p < 0.001; ηp2 < 0.10; 3.4 ± 3.4 cm), no bias was detectable during hip thrusts (p = 0.784; ηp2 < 0.001; 0.3 ± 3.3 cm). The displacement showed moderate to good ICCs (0.43 to 0.95) but a high LoA (7.8 to 10.7 cm) for the validity and (within- and between-day) reliability of squats and hip thrusts. The VmaxPro® is considered to be a valid and reliable tool for the MCV assessment.


2018 ◽  
Vol 42 (6) ◽  
pp. 872-883 ◽  
Author(s):  
Young-Shin Cho ◽  
Seong-Ho Jang ◽  
Jae-Sung Cho ◽  
Mi-Jung Kim ◽  
Hyeok Dong Lee ◽  
...  

Diagnostics ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 661
Author(s):  
Cristina Carmona-Pérez ◽  
Alberto Pérez-Ruiz ◽  
Juan L. Garrido-Castro ◽  
Francisco Torres Vidal ◽  
Sandra Alcaraz-Clariana ◽  
...  

Objective: The aim of this study was to design and propose a new test based on inertial measurement unit (IMU) technology, for measuring cervical posture and motor control in children with cerebral palsy (CP) and to evaluate its validity and reliability. Methods: Twenty-four individuals with CP (4–14 years) and 24 gender- and age-matched controls were evaluated with a new test based on IMU technology to identify and measure any movement in the three spatial planes while the individual is seated watching a two-minute video. An ellipse was obtained encompassing 95% of the flexion/extension and rotation movements in the sagittal and transversal planes. The protocol was repeated on two occasions separated by 3 to 5 days. Construct and concurrent validity were assessed by determining the discriminant capacity of the new test and by identifying associations between functional measures and the new test outcomes. Relative reliability was determined using the intraclass correlation coefficient (ICC) for test–retest data. Absolute reliability was obtained by the standard error of measurement (SEM) and the Minimum Detectable Change at a 90% confidence level (MDC90). Results: The discriminant capacity of the area and both dimensions of the new test was high (Area Under the Curve ≈ 0.8), and consistent multiple regression models were identified to explain functional measures with new test results and sociodemographic data. A consistent trend of ICCs higher than 0.8 was identified for CP individuals. Finally, the SEM can be considered low in both groups, although the high variability among individuals determined some high MDC90 values, mainly in the CP group. Conclusions: The new test, based on IMU data, is valid and reliable for evaluating posture and motor control in children with CP.


2012 ◽  
Vol 204-208 ◽  
pp. 2749-2752 ◽  
Author(s):  
Sung Ho Cho ◽  
Eun Soo Lee

The three-dimensional coordinates monitoring system to underground pipeline using IMU (Inertial Measurement Unit) sensing technique was developed. Three-dimensional coordinates obtained from the developed system were compared with three-dimensional coordinates obtained from using total stations and levels. when compared with the results, maximum error of the horizontal and vertical positions were 7cm ,14cm respectively. In our Country, tolerance error of underground utility surveying is ± 30cm. Therefore, the developed system is expected to be utilized the underground pipeline location surveying .


Sign in / Sign up

Export Citation Format

Share Document