Accurate determination of chemical shift tensor orientations of single-crystals by solid-state magic angle spinning NMR

2017 ◽  
Vol 282 ◽  
pp. 89-103 ◽  
Author(s):  
Yamini S. Avadhut ◽  
Johannes Weber ◽  
Jörn Schmedt auf der Günne
2017 ◽  
Vol 73 (3) ◽  
pp. 234-243 ◽  
Author(s):  
Nicolas J. Vigilante ◽  
Manish A. Mehta

We report an analysis of the 13C solid-state NMR chemical shift data in a series of four cocrystals involving two active pharmaceutical ingredient (API) mimics (caffeine and theophylline) and two diacid coformers (malonic acid and glutaric acid). Within this controlled set, we make comparisons of the isotropic chemical shifts and the principal values of the chemical shift tensor. The dispersion at 14.1 T (600 MHz 1H) shows crystallographic splittings in some of the resonances in the magic angle spinning spectra. By comparing the isotropic chemical shifts of individual C atoms across the four cocrystals, we are able to identify pronounced effects on the local electronic structure at some sites. We perform a similar analysis of the principal values of the chemical shift tensors for the anisotropic C atoms (most of the ring C atoms for the API mimics and the carbonyl C atoms of the diacid coformers) and link them to differences in the known crystal structures. We discuss the future prospects for extending this type of study to incorporate the full chemical shift tensor, including its orientation in the crystal frame of reference.


2016 ◽  
Vol 18 (6) ◽  
pp. 4902-4910 ◽  
Author(s):  
J. Ole Brauckmann ◽  
J. W. G. (Hans) Janssen ◽  
Arno P. M. Kentgens

To be able to study mass-limited samples and small single crystals, a triple resonance micro-magic angle spinning (μMAS) probehead for the application of high-resolution solid-state NMR of nanoliter samples was developed.


2021 ◽  
Vol 2 (2) ◽  
pp. 589-606
Author(s):  
Günter Hempel ◽  
Paul Sotta ◽  
Didier R. Long ◽  
Kay Saalwächter

Abstract. Chemical shift tensors in 13C solid-state NMR provide valuable localized information on the chemical bonding environment in organic matter, and deviations from isotropic static-limit powder line shapes sensitively encode dynamic-averaging or orientation effects. Studies in 13C natural abundance require magic-angle spinning (MAS), where the analysis must thus focus on spinning sidebands. We propose an alternative fitting procedure for spinning sidebands based upon a polynomial expansion that is more efficient than the common numerical solution of the powder average. The approach plays out its advantages in the determination of CST (chemical-shift tensor) principal values from spinning-sideband intensities and order parameters in non-isotropic samples, which is here illustrated with the example of stretched glassy polycarbonate.


2019 ◽  
Vol 73 (8-9) ◽  
pp. 471-475 ◽  
Author(s):  
Kai Xue ◽  
Salvatore Mamone ◽  
Benita Koch ◽  
Riddhiman Sarkar ◽  
Bernd Reif

2000 ◽  
Vol 53 (12) ◽  
pp. 971 ◽  
Author(s):  
Eric W. Ainscough ◽  
Andrew M. Brodie ◽  
Peter C. Healy ◽  
Joyce M. Waters

The X-ray crystal structure determination of bis[-(phenylcyanamido)bis(triphenylphosphine)copper(I)], [{Cu(PPh3)2(C6H5NCN)}2], (1) is reported. The complex has a centrosymmetric dimeric structure with the phenylcyanamide ligands bridging the copper atoms in a -1,3-fashion. The structure is compared with that of the 4-methylphenylcyanamido complex, [{Cu(PPh3)2(4-MeC6H4NCN)}2] (2), and the differences observed in the Cu–P bond lengths compared with changes in the solid state 31P cross-polarization magic-angle spinning (CPMAS) spectra of the two complexes.


Sign in / Sign up

Export Citation Format

Share Document