scholarly journals Enhancement in mechanical properties and corrosion resistance of 2507 duplex stainless steel via friction stir processing

2020 ◽  
Vol 9 (4) ◽  
pp. 8296-8305 ◽  
Author(s):  
C.Y. Ma ◽  
L. Zhou ◽  
R.X. Zhang ◽  
D.G. Li ◽  
F.Y. Shu ◽  
...  
Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 369 ◽  
Author(s):  
Hafiz M. Abubaker ◽  
Necar Merah ◽  
Fadi A. Al-Badour ◽  
Jafar Albinmousa ◽  
Ahmad A. Sorour

Duplex stainless steel (DSS) is used for desalination equipment, pressure vessels, marine applications, offshore applications, and in oil/gas plants where a highly corrosive environment is present. Super duplex stainless steel (SDSS) 2507 has excellent mechanical properties, such as high strength, high toughness, high fatigue life, and high corrosion resistance. Friction stir processing (FSP) is used to refine the grain structure of the processed region such that properties like strength, hardness, fracture toughness, fatigue life, and corrosion resistance are enhanced. In this paper, an optimized friction stir process of 2507 SDSS is carried out to refine the microstructure of the material in order to improve its mechanical properties. Microstructure analysis revealed that grains were refined from a size of around 160 µm in the base material to 2–30 µm in the processed zone. This grain size reduction resulted in improved strength, hardness, and fracture toughness of the material by up to 14%, 11%, and 12%, respectively. However, FSP has reduced the fracture strain by about 30%.


RSC Advances ◽  
2016 ◽  
Vol 6 (114) ◽  
pp. 112738-112747 ◽  
Author(s):  
Jinlong Zhao ◽  
Chunguang Yang ◽  
Dawei Zhang ◽  
Ying Zhao ◽  
M. Saleem Khan ◽  
...  

Solution treated 2205-Cu DSS with strong antibacterial performance against M. salsuginis showed appropriate mechanical properties and corrosion resistance.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1012 ◽  
Author(s):  
Feng Shang ◽  
Xiaoqiu Chen ◽  
Zhiyong Wang ◽  
Zuchun Ji ◽  
Fei Ming ◽  
...  

UNS S32707 hyper-duplex stainless steel (HDSS) parts with complex shapes for ocean engineering were prepared by selective laser melting (SLM) process. In the process of SLM, the balance between austenite and ferrite was undermined due to the high melting temperature and rapid cooling rate, resulting in poor ductility and toughness. The solution annealing was carried out with various temperatures (1050–1200 °C) for one hour at a time. The evolution of microstructures, mechanical properties, and corrosion resistance of UNS S32707 samples prepared by SLM was comprehensively investigated. The results indicate that a decrease in nitrogen content during the SLM process reduced the content of austenite, and a nearly balanced microstructure was obtained after appropriate solution annealing. The ratio between ferrite and austenite was approximately 59.5:40.5. The samples with solution treated at 1150 °C and 1100 °C exhibited better comprehensive mechanical properties and pitting resistance, respectively.


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2468 ◽  
Author(s):  
Papula ◽  
Song ◽  
Pateras ◽  
Chen ◽  
Brandt ◽  
...  

Additive manufacturing (AM) is a rapidly growing field of technology. In order to increase the variety of metal alloys applicable for AM, selective laser melting (SLM) of duplex stainless steel 2205 powder and the resulting microstructure, density, mechanical properties, and corrosion resistance were investigated. An optimal set of processing parameters for producing high density (>99.9%) material was established. Various post-processing heat treatments were applied on the as-built predominantly ferritic material to achieve the desired dual-phase microstructure. Effects of annealing at temperatures of 950 °C, 1000 °C, 1050 °C, and 1100 °C on microstructure, crystallographic texture, and phase balance were examined. As a result of annealing, 40–46 vol.% of austenite phase was formed. Annealing decreased the high yield and tensile strength values of the as-built material, but significantly increased the ductility. Annealing also decreased the residual stresses in the material. Mechanical properties of the SLM-processed and heat-treated materials outperformed those of conventionally produced alloy counterparts. Using a scanning strategy with 66° rotation between layers decreased the strength of the crystallographic texture. Electrochemical cyclic potentiodynamic polarization testing in 0.6 M NaCl solution at room temperature showed that the heat treatment improved the pitting corrosion resistance of the as-built SLM-processed material.


Sign in / Sign up

Export Citation Format

Share Document