scholarly journals Effect of fiber dispersion, content and aspect ratio on tensile strength of PP fiber reinforced soil

Author(s):  
Shixin He ◽  
Xuxiang Wang ◽  
Haibo Bai ◽  
Zhiwei Xu ◽  
Dan Ma
2016 ◽  
Vol 28 (7) ◽  
pp. 04016031 ◽  
Author(s):  
Chao-Sheng Tang ◽  
De-Yin Wang ◽  
Yu-Jun Cui ◽  
Bin Shi ◽  
Jian Li

2018 ◽  
Vol 146 ◽  
pp. 53-59 ◽  
Author(s):  
Yan Li ◽  
Xianzhang Ling ◽  
Lei Su ◽  
Lingshi An ◽  
Peng Li ◽  
...  

2018 ◽  
Vol 162 ◽  
pp. 02001
Author(s):  
Wasan Khalil ◽  
Hisham Ahmed ◽  
Zainab Hussein

In this investigation, sustainable High Performance Lightweight Aggregate Concrete (HPLWAC) containing artificial aggregate as coarse lightweight aggregate (LWA) and reinforced with mono fiber, double and triple hybrid fibers in different types and aspect ratios were produced. High performance artificial lightweight aggregate concrete mix with compressive strength of 47 MPa, oven dry density of 1828 kg/m3 at 28 days was prepared. The Fibers used included, macro hooked steel fiber with aspect ratio of 60 (type S1), macro crimped plastic fiber (P) with aspect ratio of 63, micro steel fiber with aspect ratio of 65 (type S), and micro polypropylene fiber (PP) with aspect ratio of 667. Four HPLWAC mixes were prepared including, one plain concrete mix (without fiber), one mono fiber reinforced concrete mixes (reinforced with plastic fiber with 0.75% volume fraction), one double hybrid fiber reinforced concrete mixes (0.5% plastic fiber + 0.25% steel fiber type S), and a mix with triple hybrid fiber (0.25% steel fiber type S1+ 0.25% polypropylene fiber + 0.25% steel fiber type S). Fresh (workability and fresh density) and hardened concrete properties (oven dry density, compressive strength, ultrasonic pulse velocity, splitting tensile strength, flexural strength, static modules of elasticity, thermal conductively, and water absorption) were studied. Generally, mono and hybrid (double and triple) fiber reinforced HPLWAC specimens give a significant increase in splitting tensile strength and flexural strength compared with plain HPLWAC specimens. The percentage increases in splitting tensile strength for specimens with mono plastic fiber are, 20.8%, 31.9%, 36.4% and 41%, while the percentage increases in flexure strength are 19.5%, 37%, 33.9% and 34.2% at 7, 28, 60, 90 days age respectively relative to the plain concrete. The maximum splitting tensile and flexure strengths were recorded for triple hybrid fiber reinforced HPLWAC specimens. The percentage increases in splitting tensile strength for triple hybrid fiber reinforced specimens are 19.5%, 37%, 33.9% and 34.2%, while the percentage increases in flexure strength are 50.5%, 62.4. %, 66.8% and 62.2% at 7, 28, 60 and 90 days age respectively relative to the plain concrete specimens.


Author(s):  
Nilo C. Consoli ◽  
Michéle D. T. Casagrande ◽  
Pedro D. M. Prietto ◽  
Anto⁁nio Thomé

2013 ◽  
Vol 44 (3) ◽  
pp. 418-433
Author(s):  
Seyed Mahdi Hejazi ◽  
Seyed Mahdi Abtahi ◽  
Mohammad Sheikhzadeh ◽  
Amir Mostashfi

In this research, loop-formed fiber is introduced as a novel reinforcement method of soil composites instead of using ordinary fibers. In order to investigate the materials' mechanical properties, the shear behavior of both fiber and looped-fiber-reinforced soil composites was analyzed by micromechanical method (finite element method) and a set of direct shear tests. The results indicate that the looped-fiber soil composite exhibits greater failure strain energy compared with fiber-reinforced soil composite at the same fiber orientation in the substrate. Furthermore, the proposed model demonstrated two major reinforcing components: “the fiber effect” and “the loop effect.” The latter effect is the key benefit and the main advantage of using looped fibers over ordinary fibers in soil reinforcement. Altogether, there is a close agreement between finite element method outputs and experimental results, suggestive of a novel technical textile material that could potentially be used in geotechnical engineering.


Sign in / Sign up

Export Citation Format

Share Document