splitting tensile strength
Recently Published Documents


TOTAL DOCUMENTS

330
(FIVE YEARS 129)

H-INDEX

15
(FIVE YEARS 7)

Author(s):  
Vasanth G ◽  
Dr. K. Ramadevi

This study presents experimentally the combined effect of using Nano-silica (NS) and steel fibers (SF) on the mechanical properties of hardened concrete. NS is used as partial cement replacement by different percentages, and SF is used as volume substitution by different percentages. Splitting tensile strength, modulus of elasticity, and flexural strength are evaluated using different combinations between NS and SF. Significant improvement in the mechanical properties of concrete is observed on using NS due to its high pozzolanic activity. The Optimum content of SF is improved splitting tensile strength with different percentages respectively compared to without either NS or SF. Utilizing NS with SF leads to improving modulus of elasticity compared to without either NS or SF. Flexural strength is doubled for using NS and SF compared to without NS and SF.


Author(s):  
Carla Cavalcante Araújo ◽  
Gibson Rocha Meira

abstract: Periodic inspections in reinforced concrete structures are important to be carried out to assess their state of conservation. In this scenario, non-destructive tests can be a suitable option since destructive tests are invasive and may be difficult to be performed in some cases. Considering this option, correlations between non-destructive test parameters and the concrete properties to be analyzed are useful tools that make easier the structure inspection. In the present work, correlations between the compressive strength (fc) and splitting tensile strength (ft) and surface electrical resistivity (ρ) of concretes were studied. Brazilian concretes of six different mixtures were analyzed at five different ages and correlation curves between strength properties and surface electrical resistivity of concrete were obtained, which are represented by the general relationships fc= 14.18·ln(ρ) + 18.43 and ft = 0.69·ln(ρ) + 2.15 for compressive strength and splitting tensile strength, respectively. In addition, a general curve considering literature data and results from this work was proposed to represent the relationship between compressive strength and surface electrical resistivity - fc = 11.89·ln(ρ) + 18.90.


2021 ◽  
Vol 14 (1) ◽  
pp. 437
Author(s):  
Wajeeha Mahmood ◽  
Asad-ur-Rehman Khan ◽  
Tehmina Ayub

This research aims to examine the effect of carbonation on the strength properties and carbonation depth of ordinary Portland cement (OPC) concrete using two different water to cement ratios (w/c) and two different replacement percentages of natural coarse aggregate (NCA) with recycled coarse aggregate (RCA). Two concrete mixes were prepared using w/c of 0.4 and 0.43. The two concrete mixes were subdivided into two subgroups based on the use of NCA and 30% RCA. The first concrete mix having w/c of 0.4 was contained NCA and from this concrete, 42 cylinders of 100 mm dia. and 200 mm height were cast. Six out of 42 cylinders served as control specimens and were not exposed to CO2. A total of 18 out of the remaining 36 cylinders was exposed to the simulated environment and the rest were exposed to the natural environment. The second concrete mix having a w/c of 0.4 contained 30% RCA/70% NCA, and using this concrete, 42 cylinders of similar size were cast. A similar scheme was adopted for w/c of 0.43 and, in total, 84 cylinders using four mix designs were cast. After casting and 28 days of curing, six out of 42 cylinders cast from each concrete mix design were tested for compression and splitting tensile strength, following ASTM C39 and ASTM C496 without any exposure to carbon dioxide (CO2). A total of 18 out of the remaining 36 cylinders was exposed to the simulated environment in a carbonation chamber for an equivalent time duration of 90, 180 and 365 days following CEN test guidelines and the other 18 cylinders were kept in the natural environment for a period of 90, 180 and 365 days. After the completion of simulated and natural exposure periods, these cylinders were distributed equally to test for compressive strength and splitting tensile strength to observe the effect of carbon dioxide (CO2) at each time duration (i.e., 90, 180 and 365 days), and replacement percentage of RCA (i.e., 0 and 30%), which showed that carbonation depth increases incrementally with the w/c ratio and CO2 exposure duration. In both the simulated and the natural environment, the use of RCA in concrete cast using a w/c of 0.4 increased carbonation depth up to 38% and 46%, whereas, in the case of the concrete cast using a w/c ratio of 0.43, the use of RCA increased the carbonation depth up to 16% and 25%. In general, the use of RCA in the concrete exposed to the natural environment significantly affected the compressive strength of concrete, due to multiple interfaces and the porous structure of RCA, and the variation in the temperature, humidity and content of carbon dioxide (CO2) present in the actual environment. The maximum compressive strength variation prepared from the mixes M0-0.4, M30-0.43, M0-0.43 and M30-0.43 differed by 5.88%, 7.69%, 16.67% and 20% for an exposure period up to 365 days. Similarly, the results of splitting tensile strength tests on cylinders prepared from the same mixes exposed to the natural environment differ by 7.4%, 27.6%, 25.41% and 18.2% up to 365 days of exposure, respectively, as compared to the simulated environment.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 250
Author(s):  
Marta Słowik ◽  
Amanda Akram

Tensile strength of concrete is the basic property when estimating the cracking resistance of the structure and when analysing fracture processes in concrete. The most common way of testing tensile strength is the Brazilian method. It has been noticed that the shape and size of specimens influence the tensile splitting strength. The experiments were performed to investigate the impact of cylinder’s length on tensile concrete strength received in the Brazilian method. During the experiment the tensile concrete strength was tested on two different sizes cylindrical specimens: 150 mm × 150 mm and 150 mm × 300 mm. Experiments were performed in two stages, with two types of maximum aggregate size: 16 mm and 22 mm. The software “Statistica” was used to perform the broad scale statistical analysis. When comparing test results for shorter and longer specimens, the increase of tensile splitting strength tested on shorter cylinders was observed (approximately 5%). However, when performing deeper statistical analysis, it has been found that the length effect was not sensitive to the strength of the cement matrix and the type of aggregate but was influenced by the aggregate size. Further experiments are needed in order to perform a multi-parameter statistical analysis of scale effect when testing the splitting tensile strength of concrete.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7531
Author(s):  
Afnan Nafees ◽  
Muhammad Faisal Javed ◽  
Sherbaz Khan ◽  
Kashif Nazir ◽  
Furqan Farooq ◽  
...  

Silica fume (SF) is a mineral additive that is widely used in the construction industry when producing sustainable concrete. The integration of SF in concrete as a partial replacement for cement has several evident benefits, including reduced CO2 emissions, cost-effective concrete, increased durability, and mechanical qualities. As environmental issues continue to grow, the development of predictive machine learning models is critical. Thus, this study aims to create modelling tools for estimating the compressive and cracking tensile strengths of silica fume concrete. Multilayer perceptron neural networks (MLPNN), adaptive neural fuzzy detection systems (ANFIS), and genetic programming are all used (GEP). From accessible literature data, a broad and accurate database of 283 compressive strengths and 149 split tensile strengths was created. The six most significant input parameters were cement, fine aggregate, coarse aggregate, water, superplasticizer, and silica fume. Different statistical measures were used to evaluate models, including mean absolute error, root mean square error, root mean squared log error and the coefficient of determination. Both machine learning models, MLPNN and ANFIS, produced acceptable results with high prediction accuracy. Statistical analysis revealed that the ANFIS model outperformed the MLPNN model in terms of compressive and tensile strength prediction. The GEP models outperformed all other models. The predicted values for compressive strength and splitting tensile strength for GEP models were consistent with experimental values, with an R2 value of 0.97 for compressive strength and 0.93 for splitting tensile strength. Furthermore, sensitivity tests revealed that cement and water are the determining parameters in the growth of compressive strength but have the least effect on splitting tensile strength. Cross-validation was used to avoid overfitting and to confirm the output of the generalized modelling technique. GEP develops an empirical expression for each outcome to forecast future databases’ features to promote the usage of green concrete.


2021 ◽  
Vol 8 (1) ◽  
pp. 30-39
Author(s):  
KS Sushmitha ◽  
P Dhanabal

The aim of this research is to test the characteristics of concrete by substitute fine aggregate with iron ore tailings and partial glass powder as in the place of cement. Concrete with waste products such as glass powder and iron ore tailings offer technical, economic and environmental advantages. In this experimental investigation, glass powder is replaced with cement by 10%, 20% and 30% and iron ore tailings with fine aggregates by 30% which is the optimum percentage. To study the role of glass powder and iron ore tailings combination in concrete. The properties such compressive strength, flexural strength, tensile strength and also durability parameters likely water absorption investigation for M40 concrete is carried out with different percentages of glass powder by keeping the iron ore tailings percentage constant. At 30% glass powder substitution as cement and sand with IOT increases concrete effectiveness. The concrete with 10% glass powder & 30% iron ore tailings showed a higher strength compared to the conventional mix for 28 days. Concrete mix containing 10% GP and 30% IOT showed higher flexural strength of 5.05 MPa for 28 days. Splitting tensile strength value is also increasing i. e for 10% glass powder and 30% IOT, obtained splitting tensile strength was 4.48 MPa and modulus of elasticity value was has also increased. Water absorption experiment consequences results that water absorption decreases with an increase in GP percentage.  The concrete workability tends to decrease when with glass powder content increase. Concrete containing 10% glass powder and 30% IOT showed maximum strength and it is considered as the optimum dosage.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wasim Barham ◽  
Ammar AL-Maabreh ◽  
Omar Latayfeh

PurposeThe influence of using magnetic water instead of tap water in the mechanical properties of the concrete exposed to elevated temperatures was investigated. Two concrete mixes were used and cast with the same ingredients. Tap water was used in the first mix and magnetic water was used in the second mix. A total of 48 specimens were cast and divided as follows: 16 cylinders for the concrete compressive strength test (8 samples for each mix), 16 cylinders for the splitting tensile strength (8 specimens for each mix) and 16 beams to test the influences of magnetized water on the flexural strength of concrete (8 specimens for each mixture). Specimens were exposed to temperatures of (25 °C, 200 °C, 400 °C and 600 °C). The experimental results showed that magnetic water highly affected the mechanical properties of concrete. Specimens cast and curried out with magnetic water show higher compressive strength, splitting tensile strength and flexural strength compared to normal water specimens at all temperatures. The relative strength range between the two types of water used was 110–123% for compressive strength and 110–133% for splitting strength. For the center point loading test, the relative flexural strength range was 118–140%. The use of magnetic water in mixing concrete contribute to a more complete hydration process.Design/methodology/approachExperimental study was carried out on two concrete mixes to investigate the effect of magnetic water. Mix#1 used normal water as the mixing water, and Mix#2 used magnetic water instead of normal water. After 28 days, all the samples were taken out of the tank and left to dry for seven days, then they were divided into different groups. Each group was exposed to a different temperature where it was placed in a large oven for two hours. Three different tests were carried out on the samples, these tests were concrete compressive strength, flexural strength and splitting tensile strength.FindingsExposure of concrete to high temperatures had a significant influence on concrete mechanical properties. Specimens prepared using magnetic water showed higher compressive strength at all temperature levels. The use of magnetic water in casting and curing concrete can increase the compressive strength by 23%. Specimens prepared using magnetic water show higher splitting tensile strength at all temperatures up to 33%. The use of magnetic water in casting and curing can strengthen and increase concrete resistance to high temperatures, a significant enhancement in flexural strength at all temperatures was found with a value up to 40%.Originality/valuePrevious research proved the advantages of using magnetic water for improving the mechanical properties of concrete under normal conditions. The potential of using magnetic water in the concrete industry in the future requires conducting extensive research to study the behavior of magnetized concrete under severe conditions to which concrete structures may be subjected to. These days, there are attempts to obtain stronger concrete with high resistance to harsh environmental conditions without adding new costly ingredients to its main mixture. No research has been carried out to investigate the effect of magnetic water on the mechanical properties of concrete exposed to elevated temperature. The main objective of this study is to evaluate the effect of using magnetic water on the mechanical properties of hardened concrete subjected to elevated temperature.


Author(s):  
Wafa Ben Achour ◽  
Saloua El Euch Khay ◽  
Karim Miled ◽  
Jamel Neji

This paper focuses on the characterization of the mechanical behaviour of concrete incorporating different percentages of brick waste aggregates (BWA). Compressive strength, splitting tensile strength and elastic modulus of this material were measured based on standard laboratory tests and its microstructure was characterized based on scanning electron microscope (SEM) observations. A decrease in these properties was observed with the increase of BWA substitution ratio. However, this decrease remains moderate up to a substitution percentage of 30% (about 12% for compressive strength and elastic modulus and 8% for splitting-tensile strength). In addition, an increase in the concrete porosity was observed with the increase of BWA substitution ratio, which can explain the decrease observed in the measured mechanical characteristics. SEM views on concrete incorporating 100% of BWA showed that the interfacial transition zone (ITZ) and the cement paste present a higher porosity when compared to those of the reference concrete made with natural aggregates.Finally, a micromechanical analytical homogenization model predicting the elastic modulus of brick waste concrete (BWC) according to its composition is proposed where BWC is modelled as a three-phase composite. A good agreement was found between analytical predictions and experimental results proving that BWC mechanical characteristics are mainly governed by BWA mechanical properties and their volume fraction within concrete.


Sign in / Sign up

Export Citation Format

Share Document