soil interface
Recently Published Documents


TOTAL DOCUMENTS

317
(FIVE YEARS 96)

H-INDEX

34
(FIVE YEARS 4)

Author(s):  
Morgan Funderburk ◽  
Jamie Tran ◽  
Michael Todd ◽  
Anton Netchaev ◽  
Kenneth J Loh

Abstract Local scour is a growing cause of bridge failure in the United States and around the world. In the next century, the effects of climate changes will make more bridges susceptible to scour failure more than ever before. This study aims to harness the spatially continuous monitoring capabilities of ultrasonic time-domain reflectometry to detect a soil interface for the purposes of scour monitoring. In this study, a long, slender plate is coupled with two flexible piezoelectric devices that propagate Lamb waves along the length of the plate to form the scour sensor. The sensor was tested for sensitivity to external pressure using metal weights, and was able to detect the position of the pressure up at a length of up to ~ 20 feet. The sensor was tested under simulated scour conditions, being buried in sand at various depths. The results show that the Lamb wave scour sensor is capable of reliably detecting a soil interface at 1 ft intervals. The scour sensor was also able to detect uncompacted soil interfaces, which is important considering the issue of scour hole refill following an extreme event.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Feng Shuang Guo ◽  
Yun Sheng Wang ◽  
Chang Bao Wang ◽  
LiJuan Wang

To investigate the seismic performance of underground structures under the action of the structure-soil interface, in this study, experiments were performed using plexiglass structures (two pieces) and a concrete structure (one piece) as the research objects. The surface of one plexiglass structure was prepainted with a layer of cement mortar as the contact surface between the structure and soil, and the other plexiglass structure was not treated and used for comparison. A rigid model box measuring 2.25 m × 2.25 m × 1.5 m was placed on a 3 m × 3 m shaking table, and the box was filled with the configured model soil and the underground structure prepared in advance. Input transverse uniform excitation was imparted to the whole system. A shaking table model test was performed on the underground structures to analyse the acceleration response, stress strain, and earth pressure changes in the underground structure, and the influence of the contact surface on the seismic dynamics of the underground structure was evaluated. The test results showed that under uniform excitation, the dynamic characteristics of the underground structures were greatly affected by the intensity and depth of the seismic waves. (1) When the soil-structure contact was considered, the stress and strain of the structures increased significantly, and the stress-strain value was significantly greater than the stress-strain value of the soil-structure interface in a fully bonded state. (2) There were inconsistencies between the acceleration peak curve of the plexiglass structure considering the contact effect and the acceleration peak curve of the plexiglass structure without considering the contact effect. The difference between the two lies mainly in the corresponding maximum peak acceleration and the Fourier spectrum amplitude. With respect to the value and frequency composition, regardless of whether the input acceleration intensity was 0.2 g or 0.5 g, the peak acceleration of the organic structure was greater when the contact surface effect was considered than without the contact surface effect. Therefore, the structure-soil interface needs to be considered in actual engineering. The presence of the contact surface improves the safety of the structure and is helpful for seismic design. The results of this study provide a basis for further research on the influence of soil-pipe contact on the seismic response of underground structures.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12498
Author(s):  
Mauro Maver ◽  
Carmen Escudero-Martinez ◽  
James Abbott ◽  
Jenny Morris ◽  
Pete E. Hedley ◽  
...  

Microbial communities proliferating at the root-soil interface, collectively referred to as the rhizosphere microbiota, represent an untapped beneficial resource for plant growth, development and health. Integral to a rational manipulation of the microbiota for sustainable agriculture is the identification of the molecular determinants of these communities. In plants, biosynthesis of allelochemicals is centre stage in defining inter-organismal relationships in the environment. Intriguingly, this process has been moulded by domestication and breeding selection. The indole-alkaloid gramine, whose occurrence in barley (Hordeum vulgare L.) is widespread among wild genotypes but has been counter selected in several modern varieties, is a paradigmatic example of this phenomenon. This prompted us to investigate how exogenous applications of gramine impacted on the rhizosphere microbiota of two, gramine-free, elite barley varieties grown in a reference agricultural soil. High throughput 16S rRNA gene amplicon sequencing revealed that applications of gramine interfere with the proliferation of a subset of soil microbes with a relatively broad phylogenetic assignment. Strikingly, growth of these bacteria appeared to be rescued by barley plants in a genotype- and dosage-independent manner. In parallel, we discovered that host recruitment cues can interfere with the impact of gramine application in a host genotype-dependent manner. Interestingly, this latter effect displayed a bias for members of the phyla Proteobacteria. These initial observations indicate that gramine can act as a determinant of the prokaryotic communities inhabiting the root-soil interface.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sun Sanxiang ◽  
Zhang Yunxia ◽  
Lei Pengshui

This research aims to unfold the mass exchange mechanism of water and soil on the soil surface in the rainfall splash erosion process. We regard the rainfall splash erosion process as a collision process between the raindrop and the soil particle on the soil interface. This recognition allows us to incorporate research approaches from the spring vibrator model, which has been developed for simulating the impact of liquid drops on solid surface. We further argue that because a same set of factors determine the splash amount and infiltration amount and it is relatively simpler to observe the infiltration amount, an investigation into the relationship between the splash amount and infiltration amount would be able to provide a new channel for quantifying the splash erosion. This recognition leads us to examining the relationship between single raindrop, rainfall kinetic energy and splash erosion from both theoretical and empirical angles, with an emphasis on the relationship between the infiltration amount and the splash erosion. Such an investigation would add value to the collective effort to establish mass exchange law in water-soil interface during rainfall splash erosion. It is found that during the rainfall splash process, the splash erosion is proportional to the rainfall kinetic energy; and has a linear relation to the infiltration amount, with the rainfall intensity as one of important parameters and the slope depending on the unit conversation of the infiltration amount and the splash erosion. If the units of two items are same, the slope is the ratio of the soil and water density, and the splash erosion velocity of the rainfall is half of the rainfall terminal velocity. The single raindrop kinetic energy and the splash erosion have a quadratic parabola relation, and the splash velocity is about 1/3 of single raindrop terminal velocity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anil C. Somenahally ◽  
Richard H. Loeppert ◽  
Jizhong Zhou ◽  
Terry J. Gentry

Arsenic (As) bioavailability in the rice rhizosphere is influenced by many microbial interactions, particularly by metal-transforming functional groups at the root-soil interface. This study was conducted to examine As-transforming microbes and As-speciation in the rice rhizosphere compartments, in response to two different water management practices (continuous and intermittently flooded), established on fields with high to low soil-As concentration. Microbial functional gene composition in the rhizosphere and root-plaque compartments were characterized using the GeoChip 4.0 microarray. Arsenic speciation and concentrations were analyzed in the rhizosphere soil, root-plaque, pore water, and grain samples. Results confirmed several As-biotransformation processes in the rice rhizosphere compartments, and distinct assemblage of As-reducing and methylating bacteria was observed between the root-plaque and rhizosphere. Results confirmed higher potential for microbial As-reduction and As-methylation in continuously flooded, long term As-contaminated fields, which accumulated highest concentrations of AsIII and methyl-As concentrations in pore water and rice grains. Water management treatment significantly altered As-speciation in the rhizosphere, and intermittent flooding reduced methyl-As and AsIII concentrations in the pore water, root-plaque and rice grain. Ordination and taxonomic analysis of detected gene-probes indicated that root-plaque and rhizosphere assembled significantly different microbial functional groups demonstrating niche separation. Taxonomic non-redundancy was evident, suggesting that As-reduction, -oxidation and -methylation processes were performed by different microbial functional groups. It was also evident that As transformation was coupled to different biogeochemical cycling processes (nutrient assimilation, carbon metabolism etc.) in the compartments and between treatments, revealing functional non-redundancy of rice-rhizosphere microbiome in response to local biogeochemical conditions and As contamination. This study provided novel insights on As-biotransformation processes and their implications on As-chemistry at the root-soil interface and their responses to water management, which could be applied for mitigating As-bioavailability and accumulation in rice grains.


2021 ◽  
pp. 102969
Author(s):  
Kamran Iqbal ◽  
Chengshun Xu ◽  
Yingcai Han ◽  
Qaytmas Abdul Motalleb ◽  
Muhammad Nadeem ◽  
...  

2021 ◽  
Vol 11 (21) ◽  
pp. 9942
Author(s):  
Zheng Zuo ◽  
Guangqing Yang ◽  
Zhijie Wang ◽  
He Wang ◽  
Jing Jin

Geogrid-reinforced structures are extensively adopted in various engineering fields. At present, the influence of boundary conditions was not considered in design methods, bringing hidden dangers to the safety of the structure. In the current study, a series of pullout tests were carried out on high-density polyethylene (HDPE) geogrid-reinforced coarse sand. The magnitude and growth pattern of pullout resistance and the variation laws of interfacial shear strength indexes under four types of boundary conditions were analyzed. Additionally, the boundary reduction coefficient (BRC) was introduced to establish the relationship between rigid and flexible boundary for the design of the structure. The tests results showed that the boundary conditions cannot be ignored in the design of structures, especially in the front. When the normal loading was up to 120 kPa, the BRC-top and BRC-positive could be taken as 0.9 and 0.5, respectively, and verified by fitting results. The boundary conditions affected the pullout resistance, while the vertical loading corresponding to the maximum pullout resistance was not related to boundary conditions. Investigating the interaction of the geogrid–soil under different boundary conditions can help to improve the understanding of the behavior of reinforced soil structure, and to achieve a more efficient and economical design.


Sign in / Sign up

Export Citation Format

Share Document