Characterisation of gas phase halide-acetone complexes with photoelectron spectroscopy and ab initio calculations

2019 ◽  
Vol 364 ◽  
pp. 111178 ◽  
Author(s):  
Timothy R. Corkish ◽  
Damien B. ’t Hart ◽  
Peter D. Watson ◽  
Allan J. McKinley ◽  
Duncan A. Wild
2015 ◽  
Vol 119 (37) ◽  
pp. 9722-9728 ◽  
Author(s):  
Kim M. L. Lapere ◽  
Marcus Kettner ◽  
Peter D. Watson ◽  
Allan J. McKinley ◽  
Duncan A. Wild

1991 ◽  
Vol 46 (1) ◽  
pp. 39-46 ◽  
Author(s):  
Marco V. Andreocci ◽  
Carla Cauletti ◽  
Stefano Stranges ◽  
Bernd Wrackmeyer ◽  
Carin Stader

Gas-phase He I and He II photoelectron spectroscopy and Pseudopotential “ab initio” calculations were used to determine the electronic structure of some 4-membered cyclic amides containing Si, Sn and Pb.The IE splitting on the non-bonding nitrogen-localized m .o .s ., nNasym(a2) and nNsym(b2), due to the “through space” interaction is critically affected by the planar ring molecular structure and the coordination of the silicon and tin atoms of the ring.The pseudopotential “ab initio” model resulted successful in describing the electronic structure of the molecules containing heavy atoms, at a Koopmans’ approximation level.


1981 ◽  
Vol 36 (11) ◽  
pp. 1246-1252 ◽  
Author(s):  
Michael H. Palmer ◽  
Isobel Simpson ◽  
J. Ross Wheeler

The photoelectron spectra of the tautomeric 1,2,3,- and 1,2,4-triazole and 1,2,3,4-tetrazole systems have been compared with the corresponding N-methyl derivatives. The dominant tautomers in the gas phase have been identified as 2 H-1,2,3-triazole, 1 H-1,2,4-triazole and 2H-tetrazole.Full optimisation of the equilibrium geometry by ab initio molecular orbital methods leads to the same conclusions, for relative stability of the tautomers in each of the triazoles, but the calculations wrongly predict the tetrazole tautomerism.


2011 ◽  
Vol 115 (23) ◽  
pp. 6239-6249 ◽  
Author(s):  
Stephan Thürmer ◽  
Robert Seidel ◽  
Bernd Winter ◽  
Milan Ončák ◽  
Petr Slavíček

Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5481
Author(s):  
Marcin Sikora ◽  
Anna Bajorek ◽  
Artur Chrobak ◽  
Józef Deniszczyk ◽  
Grzegorz Ziółkowski ◽  
...  

We report on the comprehensive experimental and theoretical studies of magnetic and electronic structural properties of the Gd0.4Tb0.6Co2 compound crystallization in the cubic Laves phase (C15). We present new results and compare them to those reported earlier. The magnetic study was completed with electronic structure investigations. Based on magnetic isotherms, magnetic entropy change (ΔSM) was determined for many values of the magnetic field change (Δμ0H), which varied from 0.1 to 7 T. In each case, the ΔSM had a maximum around room temperature. The analysis of Arrott plots supplemented by a study of temperature dependency of Landau coefficients revealed that the compound undergoes a magnetic phase transition of the second type. From the M(T) dependency, the exchange integrals between rare-earth R-R (JRR), R-Co (JRCo), and Co-Co (JCoCo) atoms were evaluated within the mean-field theory approach. The electronic structure was determined using the X-ray photoelectron spectroscopy (XPS) method as well as by calculations using the density functional theory (DFT) based Full Potential Linearized Augmented Plane Waves (FP-LAPW) method. The comparison of results of ab initio calculations with the experimental data indicates that near TC the XPS spectrum collects excitations of electrons from Co3d states with different values of exchange splitting. The values of the magnetic moment on Co atoms determined from magnetic measurements, estimated from the XPS spectra, and results from ab initio calculations are quantitatively consistent.


Sign in / Sign up

Export Citation Format

Share Document