scholarly journals Circular law, extreme singular values and potential theory

2010 ◽  
Vol 101 (3) ◽  
pp. 645-656 ◽  
Author(s):  
Guangming Pan ◽  
Wang Zhou
2018 ◽  
Vol 07 (01) ◽  
pp. 1750014 ◽  
Author(s):  
Kyle Luh

Let [Formula: see text] where [Formula: see text] are iid copies of a mean zero, variance one, subgaussian random variable. Let [Formula: see text] be an [Formula: see text] random matrix with entries that are iid copies of [Formula: see text]. We prove that there exists a [Formula: see text] such that the probability that [Formula: see text] has any real eigenvalues is less than [Formula: see text] where [Formula: see text] only depends on the subgaussian moment of [Formula: see text]. The bound is optimal up to the value of the constant [Formula: see text]. The principal component of the proof is an optimal tail bound on the least singular value of matrices of the form [Formula: see text] where [Formula: see text] is a deterministic complex matrix with the condition that [Formula: see text] for some constant [Formula: see text] depending on the subgaussian moment of [Formula: see text]. For this class of random variables, this result improves on the results of Pan–Zhou [Circular law, extreme singular values and potential theory, J. Multivariate Anal. 101(3) (2010) 645–656] and Rudelson–Vershynin [The Littlewood–Offord problem and invertibility of random matrices, Adv. Math. 218(2) (2008) 600–633]. In the proof of the tail bound, we develop an optimal small-ball probability bound for complex random variables that generalizes the Littlewood–Offord theory developed by Tao–Vu [From the Littlewood–Offord problem to the circular law: Universality of the spectral distribution of random matrices, Bull. Amer. Math. Soc.[Formula: see text]N.S.[Formula: see text] 46(3) (2009) 377–396; Inverse Littlewood–Offord theorems and the condition number of random discrete matrices, Ann. of Math.[Formula: see text] 169(2) (2009) 595–632] and Rudelson–Vershynin [The Littlewood–Offord problem and invertibility of random matrices, Adv. Math. 218(2) (2008) 600–633; Smallest singular value of a random rectangular matrix, Comm. Pure Appl. Math. 62(12) (2009) 1707–1739].


Author(s):  
Chauhan Usha ◽  
Singh Rajeev Kumar

Digital Watermarking is a technology, to facilitate the authentication, copyright protection and Security of digital media. The objective of developing a robust watermarking technique is to incorporate the maximum possible robustness without compromising with the transparency. Singular Value Decomposition (SVD) using Firefly Algorithm provides this objective of an optimal robust watermarking technique. Multiple scaling factors are used to embed the watermark image into the host by multiplying these scaling factors with the Singular Values (SV) of the host image. Firefly Algorithm is used to optimize the modified host image to achieve the highest possible robustness and transparency. This approach can significantly increase the quality of watermarked image and provide more robustness to the embedded watermark against various attacks such as noise, geometric attacks, filtering attacks etc.


2011 ◽  
Vol 33 (9) ◽  
pp. 2039-2044 ◽  
Author(s):  
Xin-peng Zhou ◽  
Feng Han ◽  
Guo-hua Wei ◽  
Si-liang Wu

Author(s):  
Lucian Beznea ◽  
Nicu Boboc
Keyword(s):  

2015 ◽  
Vol 76 (2) ◽  
pp. 205-218 ◽  
Author(s):  
L. A. Mironovskii ◽  
T. N. Solov’eva

2020 ◽  
Vol 18 (1) ◽  
pp. 1727-1741
Author(s):  
Yoonjin Lee ◽  
Yoon Kyung Park

Abstract We study the modularity of Ramanujan’s function k ( τ ) = r ( τ ) r 2 ( 2 τ ) k(\tau )=r(\tau ){r}^{2}(2\tau ) , where r ( τ ) r(\tau ) is the Rogers-Ramanujan continued fraction. We first find the modular equation of k ( τ ) k(\tau ) of “an” level, and we obtain some symmetry relations and some congruence relations which are satisfied by the modular equations; these relations are quite useful for reduction of the computation cost for finding the modular equations. We also show that for some τ \tau in an imaginary quadratic field, the value k ( τ ) k(\tau ) generates the ray class field over an imaginary quadratic field modulo 10; this is because the function k is a generator of the field of the modular function on Γ 1 ( 10 ) {{\mathrm{\Gamma}}}_{1}(10) . Furthermore, we suggest a rather optimal way of evaluating the singular values of k ( τ ) k(\tau ) using the modular equations in the following two ways: one is that if j ( τ ) j(\tau ) is the elliptic modular function, then one can explicitly evaluate the value k ( τ ) k(\tau ) , and the other is that once the value k ( τ ) k(\tau ) is given, we can obtain the value k ( r τ ) k(r\tau ) for any positive rational number r immediately.


Sign in / Sign up

Export Citation Format

Share Document