Effect of CO2 soaking time on replacement efficiency and reservoir properties of tight oil and gas reservoirs

Author(s):  
Hualei Xu ◽  
Houshun Jiang ◽  
Jie Wang ◽  
Qi'nan Zhao ◽  
Yi Lei ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Rongwang Yin ◽  
Qingyu Li ◽  
Peichao Li ◽  
Yang Guo ◽  
Yurong An ◽  
...  

A mathematical model for multistage hydraulically fractured horizontal wells (MFHWs) in tight oil and gas reservoirs was derived by considering the variations in the permeability and porosity of tight oil and gas reservoirs that depend on formation pressure and mixed fluid properties and introducing the pseudo-pressure; analytical solutions were presented using the Newman superposition principle. The CPU-GPU asynchronous computing model was designed based on the CUDA platform, and the analytic solution was decomposed into infinite summation and integral forms for parallel computation. Implementation of this algorithm on an Intel i5 4590 CPU and NVIDIA GT 730 GPU demonstrates that computation speed increased by almost 80 times, which meets the requirement for real-time calculation of the formation pressure of MFHWs.


Author(s):  
Perumal Rajkumar ◽  
Venkat Pranesh ◽  
Ramadoss Kesavakumar

AbstractRapid combustion of fossil fuels in huge quantities resulted in the enormous release of CO2 in the atmosphere. Subsequently, leading to the greenhouse gas effect and climate change and contemporarily, quest and usage of fossil fuels has increased dramatically in recent times. The only solution to resolve the problem of CO2 emissions to the atmosphere is geological/subsurface storage of carbon dioxide or carbon capture and storage (CCS). Additionally, CO2 can be employed in the oil and gas fields for enhanced oil recovery operations and this cyclic form of the carbon dioxide injection into reservoirs for recovering oil and gas is known as CO2 Enhanced Oil and Gas Recovery (EOGR). Hence, this paper presents the CO2 retention dominance in tight oil and gas reservoirs in the Western Canadian Sedimentary Basin (WCSB) of the Alberta Province, Canada. Actually, hysteresis modeling was applied in the oil and gas reservoirs of WCSB for sequestering or trapping CO2 and EOR as well. Totally, four cases were taken for the investigation, such as WCSB Alberta tight oil and gas reservoirs with CO2 huff-n-puff and flooding processes. Actually, Canada has complex geology and therefore, implicate that it can serve as a promising candidate that is suitable and safer place for CO2 storage. Furthermore, injection pressure, time, rate (mass), number of cycles, soaking time, fracture half-length, conductivity, porosity, permeability, and initial reservoir pressure were taken as input parameters and cumulative oil production and oil recovery factor are the output parameters, this is mainly for tight oil reservoirs. In the tight gas reservoirs, only the output parameters differ from the oil reservoir, such as cumulative gas production and gas recovery factor. Reservoirs were modelled to operate for 30 years of oil and gas production and the factor year was designated as decision-making unit (DMU). CO2 retention was estimated in all four models and overall the gas retention in four cases showed a near sinusoidal behavior and the variations are sporadic. More than 80% CO2 retention in these tight formations were achieved and the major influencing factors that govern the CO2 storage in these tight reservoirs are injection pressure, time, mass, number of cycles, and soaking time. In general, the subsurface geology of the Canada is very complex consisting with many structural and stratigraphic layers and thus, it offers safe location for CO2 storage through retention mechanism and increasing the efficiency and reliability of oil and gas extraction from these complicated subsurface formations.


2016 ◽  
Author(s):  
Xianzheng Zhao ◽  
Yongjun Li ◽  
Bo Cai ◽  
Shen Hua ◽  
Yuanpeng Shi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document