Microcrystalline silicon oxide (μc-SiOx:H) alloys: A versatile material for application in thin film silicon single and tandem junction solar cells

2012 ◽  
Vol 358 (17) ◽  
pp. 1954-1957 ◽  
Author(s):  
V. Smirnov ◽  
A. Lambertz ◽  
B. Grootoonk ◽  
R. Carius ◽  
F. Finger
2011 ◽  
Vol 1321 ◽  
Author(s):  
Peter Cuony ◽  
Duncan T.L. Alexander ◽  
Linus Löfgren ◽  
Michael Krumrey ◽  
Michael Marending ◽  
...  

ABSTRACTLower absorption, lower refractive index and tunable resistance are three advantages of doped silicon oxide containing nanocrystalline silicon grains (nc-SiOx) compared to doped microcrystalline silicon, for the use as p- and n-type layers in thin-film silicon solar cells. In this study we show how optical, electrical and microstructural properties of nc-SiOx layers depend on precursor gas ratios and we propose a growth model to explain the phase separation in such films into Si-rich and O-rich regions as visualized by energy-filtered transmission electron microscopy.


2010 ◽  
Vol 1245 ◽  
Author(s):  
Vladimir Smirnov ◽  
Wanjiao Boettler ◽  
Andreas Lambertz ◽  
Oleksandr Astakhov ◽  
Reinhard Carius ◽  
...  

AbstractWe will describe the development and application of n-type microcrystalline silicon oxide (μc-SiOx:H) alloys as window layers in thin film silicon solar cells with microcrystalline silicon (μc-Si:H) absorber layers. Cells are prepared in n–i–p deposition sequence with illumination through the n-side. The layers were deposited by radio-frequency plasma enhanced chemical vapour deposition (RF-PECVD) at 185°C substrate temperature, using a mixture of phosphine (PH3), silane (SiH4), carbon dioxide (CO2) and hydrogen (H2) gases, at CO2 flows varied between 0.5 and 2 sccm and different thickness. Films were characterised by dark conductivity measurements, Photothermal Deflection Spectroscopy (PDS) and Raman spectroscopy to evaluate optical band gap E04, refractive index n and crystallinity ICRS, respectively. The results were compared with the data of alternative optimised window layers, such as n-type μc-Si:H and silicon carbide (μc-SiC:H) films. Also solar cells with conventional illumination through the p-side window were investigated for comparison. Solar cells were prepared with μc-SiOx:H n-layers of varied compositions and characterised by current-voltage (J-V) measurements under AM 1.5 illumination (and also under modified AM 1.5 illumination with red (OG590) and blue (OG7) filters) and reflectance measurements. The effects of the μc-SiOx n-layer composition and thickness on the performance of n-i-p cells were investigated and correlated with the optical, electrical and structural properties of the μc-SiOx:H n-layers. The results indicate that n-type μc-SiOx:H provides a sufficient combination of conductivity (up to 0.1 S/cm) and crystallinity (ICRS up to 30%) to function well as a doped layer for the internal electric field and the carrier transport and as a nucleation layer for the growth of the μc-Si:H i-layer. As a window layer, it also results in an enhanced spectral response, particularly in the long wavelength part of the spectrum of the solar cells, in comparison with the cells containing alternative window layers. An improved short circuit current density (Jsc) can be attributed to the wide optical gap E04 (around 2.3 eV) in the μc-SiOx:H window layers and reduced reflection in the long wavelength region of the spectrum. A minimum total reflectance of only 6% at 570nm wavelength was achieved with such μc-SiOx:H window layers. Using optimised n-type μc-SiOx:H as a window layer, an efficiency of 8.0% for 1cm2 cell area was achieved with 1 μm thick μc-Si:H absorber layer and Ag back reflector.


2012 ◽  
Vol 105 ◽  
pp. 187-191 ◽  
Author(s):  
Konrad Schwanitz ◽  
Stefan Klein ◽  
Tobias Stolley ◽  
Martin Rohde ◽  
Daniel Severin ◽  
...  

2014 ◽  
Vol 92 (7/8) ◽  
pp. 932-935 ◽  
Author(s):  
V. Smirnov ◽  
A. Lambertz ◽  
S. Tillmanns ◽  
F. Finger

We report on the development and application of p- and n-type hydrogenated microcrystalline silicon oxide (μc-SiOx:H) alloys in tandem thin film silicon solar cells. Our results show that the optical, electrical, and structural properties of μc-SiOx:H can be conveniently tuned over a wide range to fulfil the requirements for solar cell applications. We have shown that adding of PH3 gas during deposition tends to increase crystallinity of μc-SiOx:H layers, while additional trimethylboron (TMB) tends to suppress crystalline growth. When applied in tandem solar cells, both p- and n-type μc-SiOx:H lead to a remarkable increase in the top cell current. Taking advantage of low refractive index and high optical band gap of μc-SiOx:H allows the achievement of high efficiencies of 13.1% (initial) and 11.8% (stabilized).


2004 ◽  
Vol 451-452 ◽  
pp. 280-284 ◽  
Author(s):  
M. Lejeune ◽  
W. Beyer ◽  
R. Carius ◽  
J. Müller ◽  
B. Rech

MRS Bulletin ◽  
2007 ◽  
Vol 32 (3) ◽  
pp. 219-224 ◽  
Author(s):  
Ruud E.I. Schropp ◽  
Reinhard Carius ◽  
Guy Beaucarne

AbstractThin-film solar cell technologies based on Si with a thickness of less than a few micrometers combine the low-cost potential of thin-film technologies with the advantages of Si as an abundantly available element in the earth's crust and a readily manufacturable material for photovoltaics (PVs). In recent years, several technologies have been developed that promise to take the performance of thin-film silicon PVs well beyond that of the currently established amorphous Si PV technology. Thin-film silicon, like no other thin-film material, is very effective in tandem and triple-junction solar cells. The research and development on thin crystalline silicon on foreign substrates can be divided into two different routes: a low-temperature route compatible with standard float glass or even plastic substrates, and a high-temperature route (>600°C). This article reviews the material properties and technological challenges of the different thin-film silicon PV materials.


Sign in / Sign up

Export Citation Format

Share Document