internal electric field
Recently Published Documents


TOTAL DOCUMENTS

426
(FIVE YEARS 146)

H-INDEX

33
(FIVE YEARS 10)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 451
Author(s):  
Shijun Xie ◽  
Zhou Mu ◽  
Weidong Ding ◽  
Zhenbo Wan ◽  
Shaochun Su ◽  
...  

The on-site measurement of transient voltages is of great significance in analyzing the fault cause of power systems and optimizing the insulation coordination of power equipment. Conventional voltage transformers normally have a narrow bandwidth and are unable to accurately measure various transient voltages in power systems. In this paper, a wideband parallel resistive–capacitive voltage divider is developed, which can be used for online monitoring of transient voltages in a 220 kV power grid. The structures of the high-voltage and low-voltage arms were designed. The internal electric field distribution of the high-voltage arm was analyzed. The influence factors and improvement techniques of the upper frequency limit were studied. The parameters of the elements of the divider were determined. The voltage withstand performances and scale factors under lightning impulses and AC and DC voltages, the temperature stabilities of scale factors and the step response and bandwidth of the developed voltage divider were tested. The results show that the deviations of the scale factors under various voltage waveforms and different temperatures ranging from −20 to 40 °C are within 3%. The withstand voltage meets the relevant requirements specified in IEC60071-1-2011. The step response 10~90% rise time is approximately 29 ns, and the 3 dB bandwidth covers the range of DC to 10 MHz.


Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Cihyun Kim ◽  
Tae Jin Yoo ◽  
Min Gyu Kwon ◽  
Kyoung Eun Chang ◽  
Hyeon Jun Hwang ◽  
...  

Abstract The structure of a gate-controlled graphene/germanium hybrid photodetector was optimized by splitting the active region to achieve highly sensitive infrared detection capability. The strengthened internal electric field in the split active junctions enabled efficient collection of photocarriers, resulting in a responsivity of 2.02 A W−1 and a specific detectivity of 5.28 × 1010 Jones with reduced dark current and improved external quantum efficiency; these results are more than doubled compared with the responsivity of 0.85 A W−1 and detectivity of 1.69 × 1010 Jones for a single active junction device. The responsivity of the optimized structure is 1.7, 2.7, and 39 times higher than that of previously reported graphene/Ge with Al2O3 interfacial layer, gate-controlled graphene/Ge, and simple graphene/Ge heterostructure photodetectors, respectively.


RSC Advances ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 540-545
Author(s):  
Jing Pan ◽  
Xiaoxue Ma ◽  
Wannian Zhang ◽  
Jingguo Hu

An oxygen-vacancy-induced internal electric field enhances the photocatalytic hydrogen production activity of a BiVO4 [110] facet.


2022 ◽  
Vol 130 (3) ◽  
pp. 376
Author(s):  
Aparna Das

Light-emitting diodes (LEDs) based on group III-nitride semiconductors (GaN, AlN, and InN) are crucial elements for solid-state lighting and visible light communication applications. The most widely used growth plane for group III-nitride LEDs is the polar plane (c-plane), which is characterized by the presence of a polarization-induced internal electric field in heterostructures. It is possible to address long-standing problems in group III-nitride LEDs, by using semipolar and nonpolar orientations of GaN. In addition to the reduction in the polarization-induced internal electric field, semipolar orientations potentially offer the possibility of higher indium incorporation, which is necessary for the emission of light in the visible range. This is the preferred growth orientation for green/yellow LEDs and lasers. The important properties such as high output power, narrow emission linewidth, robust temperature dependence, large optical polarization ratio, and low-efficiency droop are demonstrated with semipolar LEDs. To harness the advantages of semipolar orientations, comprehensive studies are required. This review presents the recent progress on the development of semipolar InGaN/GaN quantum well LEDs. Semipolar InGaN LED structures on bulk GaN substrates, sapphire substrates, free-standing GaN templates, and on Silicon substrates are discussed including the bright prospects of group III-nitrides. Keywords: Group III-nitride semiconductor, semipolar, light-emitting diodes, InGaN/GaN quantum well.


2022 ◽  
pp. 130375
Author(s):  
Shuang Wang ◽  
Mei-ru Chen ◽  
Si-bo Shen ◽  
Cai-hong Cheng ◽  
Ai-jun Cai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document