Alterations of regional homogeneity in freezing of gait in Parkinson's disease

2018 ◽  
Vol 387 ◽  
pp. 54-59 ◽  
Author(s):  
Caihong Zhou ◽  
Xiaoling Zhong ◽  
Yongzhe Yang ◽  
Wanqun Yang ◽  
Lijuan Wang ◽  
...  
PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7957
Author(s):  
Lina Wang ◽  
Yongsheng Yuan ◽  
Jianwei Wang ◽  
Yuting Shen ◽  
Yan Zhi ◽  
...  

Aims We sought to explore the role of the SLC6A3 rs393795 allelic variant in cerebral spontaneous activity and clinical features in Parkinson’s disease (PD) via imaging genetic approach. Methods Our study recruited 50 PD and 45 healthy control (HC) participants to provide clinical, genetic, and resting state functional magnetic resonance imaging (rs-fMRI) data. All subjects were separated into 16 PD-AA, 34 PD-CA/CC, 14 HC-AA, and 31 HC-CA/CC four subgroups according to SLC6A3 rs393795 genotyping. Afterwards, main effects and interactions of groups (PD versus HC) and genotypes (AA versus CA/CC) on cerebral function reflected by regional homogeneity (ReHo) were explored using two-way analysis of covariance (ANCOVA) after controlling age and gender. Finally, Spearman’ s correlations were employed to investigate the relationships between significantly interactive brain regions and clinical manifestations in PD subgroups. Results Compared with HC subjects, PD patients exhibited increased ReHo signals in left middle temporal gyrus and decreased ReHo signals in left pallidum. Compared with CA/CC carriers, AA genotype individuals showed abnormal increased ReHo signals in right inferior frontal gyrus (IFG) and supplementary motor area (SMA). Moreover, significant interactions (affected by both disease factor and allelic variation) were detected in right inferior temporal gyrus (ITG). Furthermore, aberrant increased ReHo signals in right ITG were observed in PD-AA in comparison with PD-CA/CC. Notably, ReHo values in right ITG were negatively associated with Tinetti Mobility Test (TMT) gait subscale scores and positively related to Freezing of Gait Questionnaire (FOG-Q) scores in PD-AA subgroup. Conclusions Our findings suggested that SLC6A3 rs393795 allelic variation might have a trend to aggravate the severity of gait disorders in PD patients by altering right SMA and IFG function, and ultimately result in compensatory activation of right ITG. It could provide us with a new perspective for exploring deeply genetic mechanisms of gait disturbances in PD.


2019 ◽  
Vol 9 (4) ◽  
pp. 741-747 ◽  
Author(s):  
Young Eun Kim ◽  
Beomseok Jeon ◽  
Ji Young Yun ◽  
Hui-Jun Yang ◽  
Han-Joon Kim

2021 ◽  
pp. 026921552199052
Author(s):  
Zonglei Zhou ◽  
Ruzhen Zhou ◽  
Wen Wei ◽  
Rongsheng Luan ◽  
Kunpeng Li

Objective: To conduct a systematic review evaluating the effects of music-based movement therapy on motor function, balance, gait, mental health, and quality of life among individuals with Parkinson’s disease. Data sources: A systematic search of PubMed, Embase, Cochrane Library, Web of Science, PsycINFO, CINAHL, and Physiotherapy Evidence Database was carried out to identify eligible papers published up to December 10, 2020. Review methods: Literature selection, data extraction, and methodological quality assessment were independently performed by two investigators. Publication bias was determined by funnel plot and Egger’s regression test. “Trim and fill” analysis was performed to adjust any potential publication bias. Results: Seventeen studies involving 598 participants were included in this meta-analysis. Music-based movement therapy significantly improved motor function (Unified Parkinson’s Disease Rating Scale motor subscale, MD = −5.44, P = 0.002; Timed Up and Go Test, MD = −1.02, P = 0.001), balance (Berg Balance Scale, MD = 2.02, P < 0.001; Mini-Balance Evaluation Systems Test, MD = 2.95, P = 0.001), freezing of gait (MD = −2.35, P = 0.039), walking velocity (MD = 0.18, P < 0.001), and mental health (SMD = −0.38, P = 0.003). However, no significant effects were observed on gait cadence, stride length, and quality of life. Conclusion: The findings of this study show that music-based movement therapy is an effective treatment approach for improving motor function, balance, freezing of gait, walking velocity, and mental health for patients with Parkinson’s disease.


Sign in / Sign up

Export Citation Format

Share Document