scholarly journals Irradiation hardening induced by blistering in tungsten due to low-energy high flux hydrogen plasma exposure

2019 ◽  
Vol 522 ◽  
pp. 11-18 ◽  
Author(s):  
W.Q. Chen ◽  
X.Z. Xiao ◽  
B. Pang ◽  
S.S. Si ◽  
Y.Z. Jia ◽  
...  
2005 ◽  
Vol 46 (3) ◽  
pp. 561-564 ◽  
Author(s):  
Dai Nishijima ◽  
Mitsutaka Miyamoto ◽  
Hirotomo Iwakiri ◽  
Minyou Ye ◽  
Noriyasu Ohno ◽  
...  

Author(s):  
P. Yu. Grigorev ◽  
V. I. Dubinko ◽  
D. A. Terentyev ◽  
A. V. Bakaev ◽  
E. E. Zhurkin
Keyword(s):  

2012 ◽  
Vol 420 (1-3) ◽  
pp. 218-221 ◽  
Author(s):  
M. Wirtz ◽  
J. Linke ◽  
G. Pintsuk ◽  
J. Rapp ◽  
G.M. Wright

2013 ◽  
Vol 56 (4) ◽  
pp. 129-132 ◽  
Author(s):  
Satoru YOSHIMURA ◽  
Kazumasa IKUSE ◽  
Satoshi SUGIMOTO ◽  
Kensuke MURAI ◽  
Masato KIUCHI ◽  
...  

2016 ◽  
Vol 57 (3) ◽  
pp. 034003 ◽  
Author(s):  
Y.Z. Jia ◽  
W. Liu ◽  
B. Xu ◽  
S.L. Qu ◽  
L.Q. Shi ◽  
...  

2020 ◽  
Vol 193 ◽  
pp. 19-27 ◽  
Author(s):  
W.Q. Chen ◽  
X.Y. Wang ◽  
Y.L. Chiu ◽  
T.W. Morgan ◽  
W.G. Guo ◽  
...  

2008 ◽  
Vol 59 ◽  
pp. 42-45
Author(s):  
Vladimir K. Alimov ◽  
Wataru M. Shu ◽  
J. Roth ◽  
D.A. Komarov ◽  
Stefan Lindig ◽  
...  

Deuterium retention in single crystal and polycrystalline tungsten and molybdenum exposed to low-energy (38200 eV/D), high ion flux (10211022 D/m2s) deuterium plasmas at various temperatures were examined with the D(3He,p)4He nuclear reaction at a 3He energy varied from 0.69 to 4.0 MeV, and with thermal desorption spectroscopy. The surface morphology was examined by scanning electron microscope. Blisters formed on the Mo surfaces under plasma exposure are significantly larger in size than those for W. The D retention in the W and Mo samples increases with the exposure temperature, reaching its maximum at about 500 and 530 K (for ion fluxes of 1021 and 1022 D/m2/s), respectively, and then decreases as the temperature grows further. For polycrystalline W and Mo exposed at temperatures above 400 K, the D retention in the bulk (far beyond the ion implanted zone) is dominant. Plastic deformation caused by deuterium super-saturation within the near-surface layer is suggested as a mechanism for blister formation and creation of defects responsible for deuterium trapping at depths up to several micrometers.


Sign in / Sign up

Export Citation Format

Share Document