exposure temperature
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 35)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
Vol 961 (1) ◽  
pp. 012002
Author(s):  
Bashar F. Abdulkareem ◽  
Amer F. Izzet

Abstract The main aim of this study is to assess the performance and residual strength of post-fire non-prismatic reinforced concrete beams (NPRC) with and without openings. To do this, nine beams were cast and divided into three major groupings. These groups were classified based on the degrees of heating exposure temperature chosen (ambient, 400, and 700°C), with each group containing three non-prismatic beams (solid, 8 trapezoidal openings, and 8 circular openings). Experimentally, given the same beam geometry, increasing burning temperature caused degradation in NPRC beams, which was reflected in increased mid-span deflection throughout the fire exposure period and also residual deflection after cooling. But on the other hand, the issue with existing openings was exacerbated. The burned NPRC beams were then gradually cooled down by leaving them at ambient temperature in the laboratory, and the beams were loaded until failure to examine the effect of burning temperature degree on the residual ultimate load-carrying capacity of each beam by comparing them to unburned reference beams. It was found, increasing the exposure temperature leads to a reduction in ultimate strength about (5.7 and 10.84%) for solid NPRC beams exposed to 400 and 700°C, respectively related to unburned one, (21.13 -32.8) % for NPRC beams with eight trapezoidal openings, and (10.5 - 12.8) % for those having 8 circular openings. At higher loading stage the longitudinal compressive strain of Group ambient in mid-span of solid beams reach 2700 με, while the others with openings exhibit divergent strain higher than that, it’s about 3300 με meanwhile, the lower chord main reinforcements have been pass beyond yielding stress. Exposure to high temperatures reduces rafters’ stiffness causing a reduction in load carrying capacity, companion with premature failure consequently reduce the strain at the ultimate stage.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 140
Author(s):  
Paraskevi D. Askouni ◽  
Catherine (Corina) G. Papanicolaou ◽  
Lazar Azdejkovic

Limited research has focused on the effect of high temperatures on the textile-reinforced mortar (TRM)-to-masonry bond. In this study, masonry prisms that were furnished with double-layered TRM strips were tested under shear bond conditions after their exposure to 200 °C and 400 °C for 1 h using the single-lap/single-prism setup. A total of four TRM systems were applied sharing the same type of textile –a dry AR glass fiber one– and different matrices: two cementitious matrices, namely a normal-weight (TRCNM) and a lightweight (TRCLM) one, and two counterpart alkali-activated matrices (TRAANM and TRAALM) based on metakaolin and fly ash. Specimens’ exposure to elevated temperatures did not alter their failure mode which was due to the sleeve fibers’ rupture along with core fibers’ slippage from the mortar. The residual bond capacity of the TRM systems decreases almost linearly with increasing exposure temperature. The alkali-activated textile reinforced mortars outperformed their cement-based counterparts in terms of bond strength at every temperature. All systems retained close to 50% of their original shear bond strength after heating at 400 °C. Per the type of binder, lightweight matrices resulted in either comparable (cement-based systems) or better (alkali-activated systems) heat protection at the TRM/masonry interface.


2021 ◽  
Vol 11 (6) ◽  
pp. 7763-7769
Author(s):  
B. F. Abdulkareem ◽  
A. F. Izzet ◽  
N. Oukaili

The main objective of this paper is to study the behavior of Non-Prismatic Reinforced Concrete (NPRC) beams with and without rectangular openings either when exposed to fire or not. The experimental program involves casting and testing 9 NPRC beams divided into 3 main groups. These groups were categorized according to heating temperature (ambient temperature, 400°C, and 700°C), with each group containing 3 NPRC beams (solid beams and beams with 6 and 8 trapezoidal openings). For beams with similar geometry, increasing the burning temperature results in their deterioration as reflected in their increasing mid-span deflection throughout the fire exposure period and their residual deflection after cooling. Meanwhile, the existing openings situation was compounded. The burned NPRC beams were left to gradually cool down under ambient laboratory conditions, and afterward, they were loaded until failure. The influence of temperature on the residual ultimate load-carrying capacity of each beam was studied by comparing these beams with unburned reference beams. Increasing exposure temperature reduces the ultimate strength of solid NPRC beams exposed to temperatures of 400°C and 700°C by about 5.7% and 10.84% respectively. Meanwhile, NPRC beams with trapezoidal openings showed ultimate strength reductions of 21.13% and 32.8% (for beams with 8 openings) and 28% and 34.4% (for beams with 6 openings) under the same burning conditions. The excessive mid-span deflections for these three types of beams were 2%–30.8%, 1.33%–21.8%, and 1.5%–17.4% under the same burning conditions.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7595
Author(s):  
Abdulrahman M. Alhozaimy ◽  
Mshtaq Ahmed ◽  
Raja Rizwan Hussain ◽  
Abdulaziz Al-Negheimish

This paper investigates the effect of high ambient temperatures on the chloride threshold value for reinforced concrete (RC) structures. Two commonly available carbon steel rebars were investigated under four different exposure temperatures (20 °C (68 °F), 35 °C (95 °F), 50 °C (122 °F), and 65 °C (149 °C)) using environmental chambers at a constant relative humidity of 80%. For each temperature, six different levels of added chloride ions (0.00%, 0.15%, 0.30%, 0.60%, 0.90%, and 1.20% by weight of cement) were used to study the chloride threshold value. Corrosion initiation was detected by monitoring the corrosion potential and corrosion rate using electrochemical techniques. The water-soluble (free) and acid-soluble (total) chlorides were determined using potentiometric titration according to the relevant ASTM standards. The threshold chloride content for each exposure temperature was determined by analyzing the corrosion potential, corrosion rate, and chloride content of each specimen. The results showed that the chloride threshold values were significantly temperature-dependent. At temperatures of 20 °C (68 °F) and 35 °C (95 °F), the chloride threshold value (expressed as free chlorides) was approximately 0.95% by weight of cement. However, as the temperature increased to 50 °C (122 °F), the chloride threshold decreased significantly to approximately 0.70% by weight of cement. The reduction in the chloride threshold value became more dramatic at an exposure temperature of 65 °C (149 °F), decreasing to approximately 0.25% by weight of cement. The trends were similar for the rebars from the two sources, indicating that the rebar source had little influence on the chloride threshold value.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012181
Author(s):  
M Fomina ◽  
A Shchelkunov ◽  
A Shumilin

Abstract The changes in the surface area of titanium samples occurring during induction heat treatment (IHT) were studied. The dependence of the surface area of titanium samples on the exposure temperature was revealed. When a titanium sample was heated to a temperature of 1000 °C in the air at an exposure time of 60 s, there was a 45-fold area increase. The assessment of the porosity of the formed coating is carried out. The number of pores increased with increasing temperature from 374 to 1029 pieces. Accordingly, the average pore size decreased by 40%.


Author(s):  
Kiran Devi ◽  
◽  
Babita Saini ◽  
Paratibha Aggarwal ◽  
◽  
...  

The structures may be exposed to fire or high temperature conditionally or accidentally. Alteration in the behavior of concrete structure is prospective under the exposure of elevated temperature. There is an urge to find the materials which can resist the alteration in physiochemical and strength properties of cementitious materials under high temperature. In the present study, the effect of elevated temperature on cement mortar consisting of additives i.e. accelerating admixtures, and stone waste i.e. stone slurry powder, was investigated and compared with specimens at room temperature. The aim of study was to examine the practicability of these additives under exposure to high temperatures. The mortar specimens were exposed to various temperatures i.e. 1500C, 3000C, 4500C and 6000C for the duration of one hour and compared with unheated samples. The change in mass, strength and micro-structure of mortar specimens at elevated temperature was studied. The environmental assessment and performance evaluation of various mortar mixes were also evaluated. The mass of mortar specimens reduced as the exposure temperature of specimens was raised. The residual strength of mortar increased up to a certain temperature afterward, it decreased. Stone slurry powder and calcium nitrate can be used individually and in combination to resist thermal changes.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1473
Author(s):  
Jun Zhao ◽  
Kang Wang ◽  
Shuaibin Wang ◽  
Zike Wang ◽  
Zhaohui Yang ◽  
...  

This paper presents results from experimental work on mechanical properties of geopolymer concrete, mortar and paste prepared using fly ash and blended slag. Compressive strength, splitting tensile strength and flexural strength tests were conducted on large sets of geopolymer and ordinary concrete, mortar and paste after exposure to elevated temperatures. From Thermogravimetric analyzer (TGA), X-ray diffraction (XRD), Scanning electron microscope (SEM) test results, the geopolymer exhibits excellent resistance to elevated temperature. Compressive strengths of C30, C40 and C50 geopolymer concrete, mortar and paste show incremental improvement then followed by a gradual reduction, and finally reach a relatively consistent value with an increase in exposure temperature. The higher slag content in the geopolymer reduces residual strength and the lower exposure temperature corresponding to peak residual strength. Resistance to elevated temperature of C40 geopolymer concrete, mortar and paste is better than that of ordinary concrete, mortar and paste at the same grade. XRD, TGA and SEM analysis suggests that the heat resistance of C–S–H produced using slag is lower than that of sulphoaluminate gel (quartz and mullite, etc.) produced using fly ash. This facilitates degradation of C30, C40 and C50 geopolymer after exposure to elevated temperatures.


Author(s):  
Z. S. Klestova

Coronavirus infections are currently receiving a lot of attention due to the emergence of the covid-19 pandemic in the world. The search for models with which it is possible to obtain an adequate result to identify the properties of coronaviruses is intensive. For comparison with the results of our experiments, the article also presents data on the duration of preservation of the infectious properties of the SARS-Cov-2 virus by contamination of surfaces made of different materials and at different temperatures. We studied the long-term effect on coronavirus, the causative agent of transmissible swine gastroenteritis (TGE), a number of temperatures: + 4ºC, + 25ºC, minus 13ºC, minus 20ºC and thirteen-fold change in temperature, which was in the range of 31-33ºC. It was found that both vaccine and epizootic strains of TGE coronavirus after long-term storage reduce the infectious properties, but when in contact with a sensitive biological system (in vitro) quickly enough (in the case of successive passages in this system) restore them. We proved that the TGE coronavirus during storage for more than two years reduced, but did not lose infectious properties at temperatures minus 13ºC, minus 20ºC, which were restored during subsequent passage in sensitive biological systems in vitro. The same trend was observed for storage of the virus for 8 years at a temperature of + 4ºC. The fastest decrease in coronavirus titer occurred at a temperature of + 25ºC, but more stable under these conditions was the epizootic strain of the virus, which requires attention when working with field isolates of coronavirus. The general tendency of animal and human coronaviruses to decrease the survival time of the pathogen with increasing exposure temperature has been established. Resistance of the virus to repeated sharp changes in temperature (from minus 13 ± 0.5°C to room temperature) without loss of infectious properties was revealed.


Sign in / Sign up

Export Citation Format

Share Document