Development length of prestressing strand in self-consolidating concrete vs. conventional concrete: Experimental study

2020 ◽  
Vol 29 ◽  
pp. 101218
Author(s):  
Mahdi Arezoumandi ◽  
Krista B. Looney ◽  
Jeffery S. Volz
Author(s):  
M. Vidhya ◽  
E. Ezhilarasi ◽  
M. Nandhini Chella Kavitha ◽  
K. Rubini ◽  

Author(s):  
Fernando Tejeda-Dominguez ◽  
David A. Lange ◽  
Matthew D. D'Ambrosia

The growing interest in the use of self-consolidating concrete (SCC) for a wide variety of structural applications has initiated a reexamination of its properties and current construction practices and how they compare with those of conventional concrete. One property of interest is the formwork pressure of SCC and how it relates to that of conventional concrete. This work presents the results for three tall walls (28, 21.7, and 13 ft tall) cast slowly with SCC and a 10.6-ft-high column poured quickly by using the same concrete used in one of the walls. The research demonstrates that the pressure of SCC against the formwork drops quickly just after the concrete material is placed. Measurements from the walls poured slowly show that the maximum recorded pressure falls far below the hydrostatic pressure and is closely related to the pouring rate. The experiments also reveal that the formwork pressure exerted by SCC can be revitalized if the SCC is vibrated, even if stiffening is already in progress.


2018 ◽  
Vol 189 ◽  
pp. 869-881 ◽  
Author(s):  
Nabila Zemour ◽  
Alireza Asadian ◽  
Ehab A. Ahmed ◽  
Kamal H. Khayat ◽  
Brahim Benmokrane

Author(s):  
Amir Farid Momeni ◽  
Robert J. Peterman ◽  
B. Terry Beck ◽  
Chih-Hang John Wu

Pretensioned concrete prisms made with five different prestressing strand types (four 7-wire strands and one 3-wire strand) were load tested to failure to understand the effect of strand indentation types on the development length and bonding performance of these different reinforcements. The prestressing strands were denoted SA, SB, SD, SE and SF. SA was a smooth strand while the other four were indented strands. All strands utilized in manufacturing ofprisms had diameter of 3/8″ (9.52 mm). Among all types of strands, SF was the only 3-wire strand and the remaining strands were all 7-wire strands. For all types of strands, four straight strands were embedded into each concrete prism, which had a 5.5″ (139.7 mm) × 5.5″ (139.7 mm) square cross section. The strands were tensioned to 75 percent of ultimate tensile strength of strands and gradually de-tensioned when the concrete compressive strength reached 4500 psi (31.03 Mpa). A consistent concrete mixture with type III cement, water-cement ratio of 0.32 and a 6-in. slump was used for all prisms. Prisms were load tested in 3-point-bending at different embedment lengths to obtain estimations of the development length of each type of strand. Two out of three identical 69-in.-long (175.26 cm) prisms were load tested at one end and one was tested at both ends for each reinforcement type evaluated. First prisms were tested at 28-in. (71.12 cm) from the end, while second prisms were tested at 20-in. (33.02 cm) from the end. Third prisms were loaded at 16.5-in. (41.9 cm) from one end and 13-in. (33.02 cm) from the other end. Thus, a total of 20 load tests (5 strand types × 4 tests each) were conducted in this study. During each test, a concentrated load with the rate of 900 lb/min (4003 N/min) was applied at mid-span until failure occurred. Values of load, mid-span deflection, and strand endslip were continuously monitored and recorded during each test. Plots of load-vs-deflection were then compared for prisms with each strand type and span, and the maximum sustained moment was also calculated for each test. The load tests revealed that there is a large difference in the development length of the strands based on their indentation type.


2021 ◽  
Vol 226 ◽  
pp. 111393
Author(s):  
Royce W. Floyd ◽  
Jared Bymaster ◽  
Canh N. Dang ◽  
W. Micah Hale

Sign in / Sign up

Export Citation Format

Share Document