conventional concrete
Recently Published Documents


TOTAL DOCUMENTS

741
(FIVE YEARS 460)

H-INDEX

14
(FIVE YEARS 7)

2022 ◽  
Vol 321 ◽  
pp. 126167
Author(s):  
Purwanto ◽  
Januarti Jaya Ekaputri ◽  
Nuroji ◽  
Bobby Rio Indriyantho ◽  
Aylie Han ◽  
...  

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 306
Author(s):  
Fatheali A. Shilar ◽  
Sharanabasava V. Ganachari ◽  
Veerabhadragouda B. Patil ◽  
Kottakkaran Sooppy Nisar ◽  
Abdel-Haleem Abdel-Aty ◽  
...  

Industrial waste such as Ground Granulated Blast-Furnace Slag (GGBS) and Granite Waste Powder (GWP) is available in huge quantities in several states of India. These ingredients have no recognized application and are usually shed in landfills. This process and these materials are sources of severe environmental pollution. This industrial waste has been utilized as a binder for geopolymers, which is our primary focus. This paper presents the investigation of the optimum percentage of granite waste powder as a binder, specifically, the effect of molar and alkaline to binder (A/B) ratio on the mechanical properties of geopolymer concrete (GPC). Additionally, this study involves the use of admixture SP-340 for better performance of workability. Current work focuses on investigating the effect of a change in molarity that results in strength development in geopolymer concrete. The limits for the present work were: GGBS partially replaced by GWP up to 30%; molar ranging from 12 to 18 with the interval of 2 M; and A/B ratio of 0.30. For 16 M of GPC, a maximum slump was observed for GWP with 60 mm compared to other molar concentration. For 16 M of GPC, a maximum compressive strength (CS) was observed for GWP with 20%, of 33.95 MPa. For 16 M of GPC, a maximum STS was observed for GWP, with 20%, of 3.15 MPa. For 16 M of GPC, a maximum FS was observed for GWP, with 20%, of 4.79 MPa. Geopolymer concrete has better strength properties than conventional concrete. GPC is $13.70 costlier than conventional concrete per cubic meter.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
S. Praburanganathan ◽  
N. Sudharsan ◽  
Yeddula Bharath Simha Reddy ◽  
Chukka Naga Dheeraj Kumar Reddy ◽  
L. Natrayan ◽  
...  

This study inspects the viability of engaging the discarded paper wastes in concrete by varying the volume proportions from 0%–20% with each 5% increment in replacement of the weight of cement. A physiomechanical study was conducted, and the results were presented. A glass fiber reinforced rectangular slab with a longer span (ly) to shorter span (lx) ratio of (ly: lx) 1.16 was cast with optimum replacement of waste-paper mass and compared the force-deformation characteristics with the conventional concrete slab without waste paper. The optimum percentage of discarded papers for the replacement of cement is 5%. Also, the results imply that the compressive strength at the age of 28 days is 30% improved for the optimum replacement. Based on the outcomes of the investigation, it can be inferred that the compressive strength gets progressively reduced if the volume of the discarded paper gets increases. The incorporation of glass fibers improves the split and flexural strength of the concrete specimens considerably. The ultimate load-carrying capacity of the glass fiber reinforced waste paper incorporated concrete slab measured 42% lower than that of the conventional slab. However, development of the new type of concrete incorporating waste papers is the new trend in ensuring the sustainability of construction materials.


Eng ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 42-59
Author(s):  
Michał Łach ◽  
Gabriela Róg ◽  
Karolina Ochman ◽  
Kinga Pławecka ◽  
Agnieszka Bąk ◽  
...  

This paper presents the results of testing the adhesion of geopolymer coatings and varnishes with ceramic additives to concrete and steel substrates. The measurement method used and described in this article was the pull-off method. The pull-off method test provides an easy way to evaluate the degree of adhesion of coatings to metal surfaces. The pull-off device provides values for the peel stress, which not only allows a quick determination of the adhesion of the coating to the substrate, but also makes it easier to compare the adhesion of several coatings to each other. However, this method requires appropriate preparation, so an attempt was made to determine its suitability for geopolymer layers. The results of testing the adhesion of a geopolymer layer to a geopolymer substrate and a concrete substrate are presented. As a result of this study, a higher adhesion strength of the geopolymer layer to the geopolymer substrate was found in comparison to geopolymer coatings applied on conventional concrete. Adhesion tests were also conducted for steel substrates to which both geopolymer and acrylic lacquer were applied.


Author(s):  
Giuliana Scuderi

The construction industry is the largest global consumer of materials, among which sand plays a fundamental role; now the second most used natural resource behind water, sand is the primary component in concrete. However, natural sand production is a slow process and sand is now consumed at a faster pace than it’s replenished. One way to reduce consumption of sand is to use alternative materials in the concrete industry. This paper reports the exploratory study on the suitability of aquaculture byproducts as fine aggregates in concrete mixtures. Seashell grit, seashell flour and oyster flour were used as sand replacements in concrete mixtures (10%, 30% and 50% substitution rates). All the mixtures were characterized in fresh and hardened states (workability, air content, compressive strength and water absorption). Based on compressive strength, measured at 7 and 28 days, seashell grit provided the most promising results: the compressive strength was found to be larger than for conventional concrete. Moreover, the compressive strength of the cubes was larger, when larger percentages of seashell grit were used, with the highest value obtained for 50% substitution. However, for oyster flour and seashell flour, only 10% sand substitution provided results comparable with the control mixture. For the three aggregates, workability of concrete decreases with fineness modulus decrease. For mixtures in which shell and oyster flour were used with 30% and 50% substitution percentages, it was necessary to increase the quantity of mixing water to allow a minimal workability. In conclusion, considering the promising results of the seashell grit, it is suggested to study further the characteristic of the material, also considering its environmental and physical properties, including acoustic and thermal performances. Higher substitution percentages should also be investigated. This research adds to the relevant literature in matter of biobased concrete, aiming at finding new biobased sustainable alternatives in the concrete industry.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 360
Author(s):  
Zhengyu Wu ◽  
Ali M. Memari ◽  
Jose P. Duarte

This state of the art review paper aims to discuss the results of a literature survey on possible ways to reinforce printed concrete based on existing reinforcement strategies. Just as conventional concrete, for 3D printed concrete to be suitable for large-scale construction, reinforcement is needed to increase the tensile capacity of concrete members and reduce temperature and shrinkage cracking. Despite efforts that are currently underway, the development of proper reinforcement suitable for printed concrete is still very active on the research agenda. As an initial step for designing suitable reinforcement for printed concrete, the existing reinforcement methods for printed concrete as well as conventional cast concrete from the literature are reviewed and summarized. Through the preliminary evaluation of the suitability and effectiveness of various reinforcement methods, guidelines are proposed to better understand possible solutions to reinforce printed concrete and inspire new practical ideas to fill the current technology void. The conclusions also include the possible improvements of the existing reinforcement methods to be considered in future applications.


Buildings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 36
Author(s):  
Mahmoud Ziada ◽  
Yosra Tammam ◽  
Savaş Erdem ◽  
Roberto Alonso González Lezcano

Unlike conventional concrete materials, Engineered Cementitious Composites (ECC) use a micromechanics-based design theory in the material design process. Recently, the use of nanoparticles in various concretes and mortars has increased. This study used nanocalcite to investigate the mechanical, microstructural fractal analysis of environmentally friendly nanocalcite-doped ECC (NCa-ECC). This paper investigated the effects of nanocalcite (NCa) with different contents (0.5, 1, and 1.5% by mass of binder) on the mechanical properties of engineered cementitious composites (ECC). For this purpose, compressive strength, ultrasonic pulse velocity (UPV), and flexural strength tests were conducted to investigate the mechanical properties of the ECC series. In addition, SEM analyses were carried out to investigate the microstructural properties of the ECC series. The content of nanocalcite improved the mechanical and microstructural properties of the nanocalcite-modified ECC series. In addition, the 1 NCa series (1% nanocalcite modified to the mass of the binder) had the best performance among the series used in this study.


Author(s):  
Ankit Kumar

Abstract: This study examines the composite structure that is increasing commonly in developing countries. For medium-rise to high-rise building construction, RCC structures is no longer economical due to heavy dead weight, limited span, low natural frequency and hazardous formwork. The majority of commercial buildings are designed and constructed with reinforced concrete, which largely depends on the existence of the constituent materials as well as the quality of the necessary construction skills, and including the usefulness of design standards. Conventional RCC structure is not preferred nowadays for high rise structure. However, composite construction, is a recent development in the construction industry. Concrete-steel composite structures are now very popular due to some outstanding advantages over conventional concrete and steel structures. In the present work, RCC and steel-concrete composite structure are being considered for a Dynamic analysis of a G+25-storey commercial building of uniform and optimized section, located at in seismic zone IV. Response Spectrum analysis method is used to analyze RCC and composite structure, CSI ETABS v19 software is used and various results are compared such as time period, maximum storey displacement, maximum storey stiffness. Maximum storey shear and maximum stoey overturning moment. Keywords: RCC Structure, Composite Structure, Uniform Section, Optimized Section, Shear Connector, Time Period, Storey Displacement, Storey Shear, Storey Stiffness, Response Spectrum method, ETABS


Author(s):  
Somesh Verma

Abstract: This work presents the determination of the mechanical properties (compression, split tensile and flexural) of the specimens (cubes, cylinders and beams). The test specimens are M60 high strength concrete which includes ground granulated blast furnace slag (0%,10%, 20%, 30% and 40%) and fly ash (0% 10%, 20%, 30% and 40%) to obtain the desired resistances and properties. Finally, we used granulated blast furnace in different percentages as cement and concrete were replaced. We prepared concrete cubes, beams and cylinders and stored them for a 28-day cure. The tests are performed after 7, 21 and 28 days. To achieve the desired strength that cannot be achieved with conventional concrete and the current method, a large number of test mixtures with different percentages of fly ash and different percentages of ground granulated blast furnace slag are needed to select the combination of materials. Keywords: Fly Ash (FA), Ground Granulated Blast Furnace Slag (GGBS), Compressive strength, Tensile strength, Flexural strength, Ordinary Portland Cement (OPC)


Sign in / Sign up

Export Citation Format

Share Document