scholarly journals The effect of systemic administration of granulocyte-colony stimulating factor (G-CSF) on full thickness cartilage defect in a rabbit

2015 ◽  
Vol 23 ◽  
pp. A147
Author(s):  
T. Sasaki ◽  
T. Sasho ◽  
S. Yamaguchi ◽  
Y. Akatsu ◽  
J. Katsuragi ◽  
...  
Cartilage ◽  
2021 ◽  
pp. 194760352110219
Author(s):  
Yoshimasa Ono ◽  
Ryuichiro Akagi ◽  
Yukio Mikami ◽  
Masashi Shinohara ◽  
Hiroaki Hosokawa ◽  
...  

Objective Cartilage lesions in the knee joint can lead to joint mechanics changes and cause knee pain. Bone marrow stimulation (BMS) promotes cartilage regeneration by perforating the subchondral bone just below the injury and inducing bone marrow cells. This study aimed to investigate whether systemic administration of granulocyte colony-stimulating factor (G-CSF) with BMS improves repair of chronic partial-thickness cartilage defects (PTCDs). Design Eighteen 6-month-old New Zealand white rabbits were divided into 3 groups: control (C, n = 6), BMS alone ( n = 6), and BMS + G-CSF ( n = 6). Partial cartilage defects with 5 mm diameter were created in the trochlear region of both knees; after 4 weeks, the BMS alone and BMS + G-CSF groups underwent BMS; G-CSF (50 µg/kg) or saline was administered subcutaneously for 5 days starting from 3 days before BMS. At 8 and 16 weeks after cartilage defect creation, the area of cartilage defects was macroscopically and histologically evaluated. Results International Cartilage Repair Society (ICRS) grades for macroscopic assessment were 0, 0.7, and 0.7 at 8 weeks and 0, 1.2, and 1.3 at 16 weeks in the C, BMS, and BMS + G-CSF groups, respectively. Wakitani scores for histological assessment were 9.8, 8.7, and 8.2 at 8 weeks and 9.5, 9, and 8.2 at 16 weeks in the C, BMS, and BMS + G-CSF groups, respectively. The BMS + G-CSF group showed significantly more repair than the C group, but there was no difference from the BMS group. Conclusions The effect of BMS and G-CSF on chronic PTCDs in mature rabbit knees was limited.


2021 ◽  
pp. 096032712110085
Author(s):  
EA Ahmed ◽  
AM Abd-Eldayem ◽  
E Ahmed

Acetaminophen (APAP) is often used as an antipyretic and analgesic agent. Overdose hepatotoxicity, which often results in liver cell failure and liver transplantation, is a severe complication of APAP usage. To save the liver and save lives from acute liver damage caused by APAP, the search for new strategies for liver defense is important. Wistar rats have been used for the induction of APAP hepatotoxicity. Elevated levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) were evaluated for liver toxicity. In addition, the levels of hepatic tissue oxidative markers such as malondialdehyde (MDA), nitric oxide (NO) increased while glutathione (GSH) was depleted and catalase (CAT) activity was curtailed. The biochemical findings were consistent with the changes in histology that suggested liver damage and inflammation. Treated rats with N-acetylcysteine (N-AC) and granulocyte colony stimulating factor (G-CSF) showed a decrease in serum levels of ALT, AST and LDH, while the level of ALP in the G-CSF group was still high. After administration of APAP, treatment with N-AC or G-CSF substantially reduced the level of MDA and NO while maintaining the GSH content and CAT activity. Treatment with N-AC and G-CSF after administration of APAP has also attenuated inflammation and hepatocytes necrosis. The results of this study showed that G-CSF could be viewed as an alternative hepatoprotective agent against APAP-induced acute liver injury compared to N-AC.


2008 ◽  
Vol 22 (7) ◽  
pp. 635-639 ◽  
Author(s):  
Miyako Morooka ◽  
Kazuo Kubota ◽  
Yuji Murata ◽  
Hitoshi Shibuya ◽  
Kimiteru Ito ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document