joint mechanics
Recently Published Documents


TOTAL DOCUMENTS

306
(FIVE YEARS 95)

H-INDEX

37
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
R. C. Riddick ◽  
A. D. Kuo

AbstractThe metabolic cost of human running is not well explained, in part because the amount of work performed actively by muscles is largely unknown. Series elastic tissues such as tendon can save energy by performing work passively, but there are few direct measurements of the active versus passive contributions to work in running. There are, however, indirect biomechanical measures that can help estimate the relative contributions to overall metabolic cost. We developed a simple cost estimate for muscle work in humans running (N = 8) at moderate speeds (2.2–4.6 m/s) based on measured joint mechanics and passive dissipation from soft tissue deformations. We found that even if 50% of the work observed at the lower extremity joints is performed passively, active muscle work still accounts for 76% of the net energetic cost. Up to 24% of this cost compensates for the energy lost in soft tissue deformations. The estimated cost of active work may be adjusted based on assumptions of multi-articular energy transfer, elasticity, and muscle efficiency, but even conservative assumptions yield active work costs of at least 60%. Passive elasticity can reduce the active work of running, but muscle work still explains most of the overall energetic cost.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260398
Author(s):  
Daekyoo Kim ◽  
Cara L. Lewis ◽  
Simone V. Gill

Foot arch structure contributes to lower-limb joint mechanics and gait in adults with obesity. However, it is not well-known if excessive weight and arch height together affect gait mechanics compared to the effects of excessive weight and arch height alone. The purpose of this study was to determine the influences of arch height and obesity on gait mechanics in adults. In this study, 1) dynamic plantar pressure, 2) spatiotemporal gait parameters, 3) foot progression angle, and 4) ankle and knee joint angles and moments were collected in adults with normal weight with normal arch heights (n = 11), normal weight with lower arch heights (n = 10), obesity with normal arch heights (n = 8), and obesity with lower arch heights (n = 18) as they walked at their preferred speed and at a pedestrian standard walking speed, 1.25 m/s. Digital foot pressure data were used to compute a measure of arch height, the Chippaux-Smirak Index (CSI). Our results revealed that BMI and arch height were each associated with particular measures of ankle and knee joint mechanics during walking in healthy young adults: (i) a higher BMI with greater peak internal ankle plantar-flexion moment and (ii) a lower arch height with greater peak internal ankle eversion and abduction moments and peak internal knee abduction moment (i.e., external knee adduction moment). Our results have implications for understanding the role of arch height in reducing musculoskeletal injury risks, improving gait, and increasing physical activity for people living with obesity.


Author(s):  
Wenjing Quan ◽  
Feng Ren ◽  
Datao Xu ◽  
Fekete Gusztav ◽  
Julien S Baker ◽  
...  

Background: Joint mechanics are permanently changed using different intensities and running durations. These variations in intensity and duration also influence fatigue during prolonged running. Little is known about the potential interactions between fatigue and joint mechanics in female recreational runners. Thus, the purpose of this study was to describe and examine kinematic and joint mechanical parameters when female recreational runners are subject to fatigue as a result of running.Method: Fifty female recreational runners maintained running on a treadmill to induce fatigue conditions. Joint mechanics, sagittal joint angle, moment, and power were recorded pre- and immediately post fatigue treadmill running.Result: Moderate reductions in absolute positive ankle power, total ankle energy dissipation, dorsiflexion at initial contact, max dorsiflexion angle, and range of motion of the joint ankle were collected after fatigue following prolonged fatigue running. Knee joint mechanics, joint angle, and joint power remained unchanged after prolonged fatigue running. Nevertheless, with the decreased ankle joint work, negative knee power increased. At the hip joint, the extension angle was significantly decreased. The range motion of the hip joint, hip positive work and hip positive power were increased during the post-prolonged fatigue running.Conclusion: This study found no proximal shift in knee joint mechanics in amateur female runners following prolonged fatigue running. The joint work redistribution was associated with running fatigue changes. As for long-distance running, runners should include muscle strength training to avoid the occurrence of running-related injuries.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5156
Author(s):  
Fengqin Fu ◽  
Ievgen Levadnyi ◽  
Jiayu Wang ◽  
Zhihao Xie ◽  
Gusztáv Fekete ◽  
...  

In this paper, to investigate the independent effect of the construction of the forefoot carbon-fiber plate inserted to the midsole on running biomechanics and finite element simulation, fifteen male marathon runners were arranged to run across a runway with embedded force plates at two specific running speeds (fast-speed: 4.81 ± 0.32 m/s, slow-speed: 3.97 ± 0.19 m/s) with two different experimental shoes (a segmented forefoot plate construction (SFC), and a full forefoot plate construction (FFC)), simulating the different pressure distributions, energy return, and stiffness during bending in the forefoot region between the SFC and FFC inserted to midsole. Kinetics and joint mechanics were analyzed. The results showed that the footwear with SFC significantly increased the peak metatarsophalangeal joint (MTPJ) plantarflexion velocity and positive work at the knee joint compared to the footwear with FFC. The results about finite element simulation showed a reduced maximum pressure on the midsole; meanwhile, not significantly affected was the longitudinal bending stiffness and energy return with the SFC compared to the FFC. The results can be used for the design of marathon running shoes, because changing the full carbon fiber plate to segment carbon fiber plate induced some biomechanical transformation but did not significantly affect the running performance, what is more, reducing the peak pressure of the carbon plate to the midsole by cutting the forefoot area of the carbon fiber plate could be beneficial from a long-distance running perspective for manufacturers.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5876
Author(s):  
Mohsen Sharifi Renani ◽  
Abigail M. Eustace ◽  
Casey A. Myers ◽  
Chadd W. Clary

Gait analysis based on inertial sensors has become an effective method of quantifying movement mechanics, such as joint kinematics and kinetics. Machine learning techniques are used to reliably predict joint mechanics directly from streams of IMU signals for various activities. These data-driven models require comprehensive and representative training datasets to be generalizable across the movement variability seen in the population at large. Bottlenecks in model development frequently occur due to the lack of sufficient training data and the significant time and resources necessary to acquire these datasets. Reliable methods to generate synthetic biomechanical training data could streamline model development and potentially improve model performance. In this study, we developed a methodology to generate synthetic kinematics and the associated predicted IMU signals using open source musculoskeletal modeling software. These synthetic data were used to train neural networks to predict three degree-of-freedom joint rotations at the hip and knee during gait either in lieu of or along with previously measured experimental gait data. The accuracy of the models’ kinematic predictions was assessed using experimentally measured IMU signals and gait kinematics. Models trained using the synthetic data out-performed models using only the experimental data in five of the six rotational degrees of freedom at the hip and knee. On average, root mean square errors in joint angle predictions were improved by 38% at the hip (synthetic data RMSE: 2.3°, measured data RMSE: 4.5°) and 11% at the knee (synthetic data RMSE: 2.9°, measured data RMSE: 3.3°), when models trained solely on synthetic data were compared to measured data. When models were trained on both measured and synthetic data, root mean square errors were reduced by 54% at the hip (measured + synthetic data RMSE: 1.9°) and 45% at the knee (measured + synthetic data RMSE: 1.7°), compared to measured data alone. These findings enable future model development for different activities of clinical significance without the burden of generating large quantities of gait lab data for model training, streamlining model development, and ultimately improving model performance.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5644
Author(s):  
Liqin Deng ◽  
Yang Yang ◽  
Chenhao Yang ◽  
Ying Fang ◽  
Xini Zhang ◽  
...  

Objectives: To explore the effects of wearing compression garments on joint mechanics, soft tissue vibration and muscle activities during drop jumps. Methods: Twelve healthy male athletes were recruited to execute drop jumps from heights of 30, 45 and 60 cm whilst wearing compression shorts (CS) and control shorts (CON). Sagittal plane kinematics, ground reaction forces, accelerations of the quadriceps femoris (QF), hamstrings (HM) and shoe heel-cup, and electromyography images of the rectus femoris (RF) and biceps femoris (BF) were collected. Results: Compared with wearing CON, wearing CS significantly reduced the QF peak acceleration at 45 and 60 cm and the HM peak acceleration at 30 cm. Wearing CS significantly increased the damping coefficient for QF and HM at 60 cm compared with wearing CON. Moreover, the peak transmissibility when wearing CS was significantly lower than that when wearing CON for all soft tissue compartments and heights, except for QF at 30 cm. Wearing CS reduced the RF activity during the pre-, post-, and eccentric activations for all heights and concentric activations at 45 cm; it also reduced the BF activity during post- and eccentric activations at 30 and 60 cm, respectively. The hip and knee joint moments and power or jump height were unaffected by the garment type. Conclusion: Applying external compression can reduce soft tissue vibrations without compromising neuromuscular performance during strenuous physical activities that involve exposure to impact-induced vibrations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amanda L. Shorter ◽  
James K. Richardson ◽  
Suzanne B. Finucane ◽  
Varun Joshi ◽  
Keith Gordon ◽  
...  

AbstractIndividuals post-stroke experience persisting gait deficits due to altered joint mechanics, known clinically as spasticity, hypertonia, and paresis. In engineering, these concepts are described as stiffness and damping, or collectively as joint mechanical impedance, when considered with limb inertia. Typical clinical assessments of these properties are obtained while the patient is at rest using qualitative measures, and the link between the assessments and functional outcomes and mobility is unclear. In this study we quantify ankle mechanical impedance dynamically during walking in individuals post-stroke and in age-speed matched control subjects, and examine the relationships between mechanical impedance and clinical measures of mobility and impairment. Perturbations were applied to the ankle joint during the stance phase of walking, and least-squares system identification techniques were used to estimate mechanical impedance. Stiffness of the paretic ankle was decreased during mid-stance when compared to the non-paretic side; a change independent of muscle activity. Inter-limb differences in ankle joint damping, but not joint stiffness or passive clinical assessments, strongly predicted walking speed and distance. This work provides the first insights into how stroke alters joint mechanical impedance during walking, as well as how these changes relate to existing outcome measures. Our results inform clinical care, suggesting a focus on correcting stance phase mechanics could potentially improve mobility of chronic stroke survivors.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Mehdi Saeidi ◽  
Piaras A. Kelly ◽  
Christian Netzel ◽  
Miriam Scadeng ◽  
Pranesh Kumar ◽  
...  

Abstract Purpose One of the major contributors to the progression of knee osteoarthritis (OA) is the condition of loading in the knee joint. Innovatively designed load-sharing implants may be effective in terms of reducing joint load. The effects of these implants on contact joint mechanics can be evaluated through cadaver experiments. In this work, a case study is carried out with cadaver knee specimens to carry out a preliminary investigation into a novel load-sharing knee implant, in particular to study the surgical procedures required for attachment, and to determine the contact pressures in the joint with and without the implant. Methods Contact pressure in the tibiofemoral joint was measured using pressure mapping sensors, with and without the implant, and radiographs were conducted to investigate the influence of the implant on joint space. The implant was designed from a 3D model of the specimen reconstructed by segmenting MR images of the knee, and it was manufactured by CNC machining. Results It was observed that attachment of the implant does not affect the geometry of the hard/soft tissues. Radiographs showed that the implant led to an increase in the joint space on the medial side. Contact pressure measurements showed that the implant reduced the load on the medial side by approximately 18% under all tested loading conditions. By increasing the load from 800 to 1600 N, the percentage of load reduction in the lateral side was decreased by 8%. After applying 800, 1200, and 1600 N load it was observed that the peak contact pressures were 3.7, 4.6, and 5.5 MPa, respectively. Conclusions This new knee implant shows some promise as a treatment for OA, through its creation of a conducive loading environment in the knee joint, without sacrificing or damaging any of the hard or soft tissues. This device could be as effective as, for example, the Atlas® system, but without some complications seen with other devices; this would need to be validated through similar results being observed in an appropriate in vivo study.


Author(s):  
Rakesh Mondal ◽  
Arnab Nandy ◽  
Debadyuti Datta ◽  
Rahul Majumdar ◽  
Avijit Hazra ◽  
...  
Keyword(s):  

Author(s):  
Enrico De Pieri ◽  
Bernd Friesenbichler ◽  
Renate List ◽  
Samara Monn ◽  
Nicola C. Casartelli ◽  
...  

Hip osteoarthritis may be caused by increased or abnormal intra-articular forces, which are known to be related to structural articular cartilage damage. Femoral torsional deformities have previously been correlated with hip pain and labral damage, and they may contribute to the onset of hip osteoarthritis by exacerbating the effects of existing pathoanatomies, such as cam and pincer morphologies. A comprehensive understanding of the influence of femoral morphotypes on hip joint loading requires subject-specific morphometric and biomechanical data on the movement characteristics of individuals exhibiting varying degrees of femoral torsion. The aim of this study was to evaluate hip kinematics and kinetics as well as muscle and joint loads during gait in a group of adult subjects presenting a heterogeneous range of femoral torsion by means of personalized musculoskeletal models. Thirty-seven healthy volunteers underwent a 3D gait analysis at a self-selected walking speed. Femoral torsion was evaluated with low-dosage biplanar radiography. The collected motion capture data were used as input for an inverse dynamics analysis. Personalized musculoskeletal models were created by including femoral geometries that matched each subject’s radiographically measured femoral torsion. Correlations between femoral torsion and hip kinematics and kinetics, hip contact forces (HCFs), and muscle forces were analyzed. Within the investigated cohort, higher femoral antetorsion led to significantly higher anteromedial HCFs during gait (medial during loaded stance phase and anterior during swing phase). Most of the loads during gait are transmitted through the anterior/superolateral quadrant of the acetabulum. Correlations with hip kinematics and muscle forces were also observed. Femoral antetorsion, through altered kinematic strategies and different muscle activations and forces, may therefore lead to altered joint mechanics and pose a risk for articular damage. The method proposed in this study, which accounts for both morphological and kinematic characteristics, might help in identifying in a clinical setting patients who, as a consequence of altered femoral torsional alignment, present more severe functional impairments and altered joint mechanics and are therefore at a higher risk for cartilage damage and early onset of hip osteoarthritis.


Sign in / Sign up

Export Citation Format

Share Document