scholarly journals Power series expansion neural network

2022 ◽  
pp. 101552
Author(s):  
Qipin Chen ◽  
Wenrui Hao ◽  
Juncai He
Symmetry ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1476 ◽  
Author(s):  
Lan Qi ◽  
Zhuoyu Chen

In this paper, we introduce the fourth-order linear recurrence sequence and its generating function and obtain the exact coefficient expression of the power series expansion using elementary methods and symmetric properties of the summation processes. At the same time, we establish some relations involving Tetranacci numbers and give some interesting identities.


2012 ◽  
Vol 54 (5-6) ◽  
pp. 673-683
Author(s):  
S. A. Rakityansky ◽  
N. Elander

2019 ◽  
Vol 56 (01) ◽  
pp. 52-56
Author(s):  
Gérard Letac

AbstractFor 0 < a < 1, the Sibuya distribution sa is concentrated on the set ℕ+ of positive integers and is defined by the generating function $$\sum\nolimits_{n = 1}^\infty s_a (n)z^{{\kern 1pt} n} = 1 - (1 - z)^a$$. A distribution q on ℕ+ is called a progeny if there exists a branching process (Zn)n≥0 such that Z0 = 1, such that $$(Z_1 ) \le 1$$, and such that q is the distribution of $$\sum\nolimits_{n = 0}^\infty Z_n$$. this paper we prove that sa is a progeny if and only if $${\textstyle{1 \over 2}} \le a < 1$$. The main point is to find the values of b = 1/a such that the power series expansion of u(1 − (1 − u)b)−1 has nonnegative coefficients.


Sign in / Sign up

Export Citation Format

Share Document