Accretionary prisms of the Sikhote-Alin Orogenic Belt: Composition, structure and significance for reconstruction of the geodynamic evolution of the eastern Asian margin

2016 ◽  
Vol 102 ◽  
pp. 202-230 ◽  
Author(s):  
I.V. Kemkin ◽  
A.I. Khanchuk ◽  
R.A. Kemkina
2021 ◽  
pp. jgs2021-109
Author(s):  
Igor V. Kemkin ◽  
Andrei V. Grebennikov ◽  
Xing-Hua Ma ◽  
Ke-Ke Sun

We present new U–Pb age data for granitoids in the Central Sikhote–Alin orogenic belt in SE Russia, which refute the established opinion about the absence of the Late Cretaceous magmatism at the eastern margin of the Paleo-Asian continent. It was previously thought that a period of magmatic quiescence occurred from 88 to 50 Ma, related to subduction of the Paleo-Pacific Plate under the eastern margin of the Paleo-Asian continent, although this is inconsistent with evidence from the Sikhote–Alin, Sakhalin, and Japan regions. Three suites of plutonic rocks with different ages were identified in this study. The first suite has ages of 105–92 Ma and formed in a syn-orogenic setting. The second (86–83 Ma) and third (ca. 73 Ma) suites formed during the post-orogenic stage of the Sikhote–Alin orogenic belt. The second and third suites were coeval with Late Cretaceous granitoids that formed in a suprasubduction continental arc known as the Eastern Sikhote–Alin volcanic–plutonic belt (ESAVPB). However, the studied rocks are located far inland from the ESAVPB. The ages of the studied granitoids coincide with the timing of a change in the angle of convergence between the Paleo-Pacific Plate and eastern margin of the Paleo-Asian continent. This change in motion of the oceanic plate with respect to the continental plate was probably caused by a rupture in the subducted slab (i.e., a slab tear), followed by asthenospheric upwelling and partial melting of the overlying crust, which ultimately generated post-orogenic intrusive magmatism.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5738616


Author(s):  
Yu. V. Taltykin ◽  
◽  
L. F. Mishin ◽  
E. A. Konovalova ◽  
◽  
...  

A new mechanism for the formation of ilmenite and magnetite series of granitoids in the Sikhote-Alin orogenic belt is proposed. The existing distribution zones of these magmatites are associated with the regional redox background, where magma crystallization occurs. The paper shows the relationship between the redox background in the lithosphere of the region and subduction processes in the Cretaceous-Paleogene time. The proposed mechanism of formation of the ilmenite and magnetite zones of Sikhote-Alin also explains the differences in redox conditions during the crystallization of Mesozoic magmatites in the orogens of the Eastern and Western Pacific coasts.


2016 ◽  
Vol 174 ◽  
pp. 100-111 ◽  
Author(s):  
M.I. Oshtrakh ◽  
Z. Klencsár ◽  
E.V. Petrova ◽  
V.I. Grokhovsky ◽  
A.V. Chukin ◽  
...  

2019 ◽  
Vol 10 (2) ◽  
pp. 541-559
Author(s):  
V. S. Zakharov ◽  
A. N. Didenko ◽  
G. Z. Gil’manova ◽  
T. V. Merkulova

We performed a comprehensive analysis of the characteristics of self‐similarity of seismicity and the fault network within the Sikhote Alin orogenic belt and the adjacent areas. It has been established that the main features of seismicity are controlled by the crustal earthquakes. Differentiation of the study area according to the density of earthquake epicenters and the fractal dimension of the epicentral field of earthquakes (De) shows that the most active crustal areas are linked to the Kharpi‐Kur‐Priamurye zone, the northern Bureya massif and the Mongol‐Okhotsk folded system. The analysis of the earthquake recurrence plot slope values reveals that the highest b‐values correlate with the areas of the highest seismic activity of the northern part of the Bureya massif and, to a less extent, of the Mongol‐Okhotsk folded system. The increased fractal dimension values for the fault network (Df) correlate with the folded systems (Sikhote Alin and Mongol‐Okhotsk), while the decreased values conform to the depressions and troughs (Middle Amur, Uda and Torom). A comparison of the fractal analysis results for the fault network with the recent stress‐strain data gives evidence of their general confineness to the contemporary areas of intense compression. The correspondence between the field of the parameter b‐value for the upper crustal earthquakes and the fractal dimension value for the fault network (Df) suggests a general consistency between the self‐similar earthquake magnitude (energy) distribution and the fractal distribution of the fault sizes. The analysis results demonstrate that the selfsimilarity parameters provide an important quantitative characteristic in seismotectonics and can be used for the neotectonic and geodynamic analyses.


2020 ◽  
Vol 11 (6) ◽  
pp. 1975-1992
Author(s):  
Xin-Lu Hu ◽  
Shu-Zhen Yao ◽  
Cheng-Yin Tan ◽  
Guo-Ping Zeng ◽  
Zhen-Ju Ding ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document