cretaceous magmatism
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 36)

H-INDEX

25
(FIVE YEARS 1)

Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 50
Author(s):  
Yury O. Redin ◽  
Anna A. Redina ◽  
Viktor P. Mokrushnikov ◽  
Alexandra V. Malyutina ◽  
Vladislav F. Dultsev

Many gold and gold-bearing complex deposits related to the Late Jurassic and Early Cretaceous magmatism are known in Eastern Transbaikalia. The largest deposits are the Lugokan, the Kultuma and the Bystrinsky. These deposits are in a paragenetic relationship with the Late Jurassic magmatic rocks of the Shakhtama complex. According to the available data, the total resources of gold in these three deposits are estimated to be approximately 443 tons: the Lugokan, Au~53 tons, Cu~302 thousand tons; the Kultuma, Au~121 tons, Cu~587 thousand tons, Fe~33 mln t; the Bystrinsky, Au~269 tons, Cu~2070 thousand tons, Fe~67 mln t. One of the main aims of this work was to reveal the criteria of fertility for the classical porphyry type, based on the specific geochemical features of rock-forming and accessory minerals. A comparison of the obtained results with other data on the large porphyry and skarn deposits of the world showed that the magmatic rocks of the Bystrinsky massif, specifically porphyry species dated 159.6–158.6 Ma, are potentially ore-bearing for the porphyry type mineralization. The magmatic rocks that widely occur at the Lugokan and Kultuma deposits are most close to the Fe-skarn deposits. The best indicators of the magma fertility for the porphyry rocks are Ce/Ce*, Eu/Eu*, Yb/Dy, (Ce/Nd)/Y in zircons. Thus, magmatic rocks characterized by Ce/Ce* > 100, Eu/Eu* > 0.4, Yb/Dy > 5.0 and (Ce/Nd)/Y > 0.01 may be classified as high fertile for the classical porphyry mineralization in Eastern Transbaikalia. The plagioclase and biotite chemistry data also showed that the magmatic rocks that occurred at the Bystrinsky deposit are the most fertile for the porphyry type mineralization. The magmatic rocks classified as ore-bearing porphyry type have Al* > 1 in plagioclase, high values of IV(F) and IV(F/Cl) and low ratios of X(F)/X(OH) in biotites. The assessment of the metal fertility of magmatic rocks is most effective in combination with data on both the composition of rock-forming and accessory minerals. The obtained data may be used to develop the methods of prediction and search for gold, copper and iron mineralization.


2021 ◽  
pp. jgs2021-109
Author(s):  
Igor V. Kemkin ◽  
Andrei V. Grebennikov ◽  
Xing-Hua Ma ◽  
Ke-Ke Sun

We present new U–Pb age data for granitoids in the Central Sikhote–Alin orogenic belt in SE Russia, which refute the established opinion about the absence of the Late Cretaceous magmatism at the eastern margin of the Paleo-Asian continent. It was previously thought that a period of magmatic quiescence occurred from 88 to 50 Ma, related to subduction of the Paleo-Pacific Plate under the eastern margin of the Paleo-Asian continent, although this is inconsistent with evidence from the Sikhote–Alin, Sakhalin, and Japan regions. Three suites of plutonic rocks with different ages were identified in this study. The first suite has ages of 105–92 Ma and formed in a syn-orogenic setting. The second (86–83 Ma) and third (ca. 73 Ma) suites formed during the post-orogenic stage of the Sikhote–Alin orogenic belt. The second and third suites were coeval with Late Cretaceous granitoids that formed in a suprasubduction continental arc known as the Eastern Sikhote–Alin volcanic–plutonic belt (ESAVPB). However, the studied rocks are located far inland from the ESAVPB. The ages of the studied granitoids coincide with the timing of a change in the angle of convergence between the Paleo-Pacific Plate and eastern margin of the Paleo-Asian continent. This change in motion of the oceanic plate with respect to the continental plate was probably caused by a rupture in the subducted slab (i.e., a slab tear), followed by asthenospheric upwelling and partial melting of the overlying crust, which ultimately generated post-orogenic intrusive magmatism.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5738616


2021 ◽  
Vol 82 (3) ◽  
pp. 274-276
Author(s):  
Svetoslav Georgiev

We present new Hf isotopic data of magmatic zircons from the Eastern Srednogorie zone. The data outline two clear temporal trends: rising initial εHf from the initiation of the magmatism at ~95 Ma to 81 Ma, followed by a rapid decline in the initial εHf in the 81–78 Ma time period. The first trend highlights the increasing participation of mantle melts in the formation of magmatic products in the East Balkan and Strandzha regions, which is likely dictated by the southward retreat of the subducting slab. This trend is also evident in published Hf isotopic data on zircons from Central Srednogorie zone. The second trend of rapidly decreasing initial εHf of zircons is interpreted to reflect increased proportion of lower crustal melts in an intra-arc rift extensional environment (the Yambol-Burgas region) between 81 and 78 Ma; this trend is not observed in the Central Srednogorie zone.


2021 ◽  
Author(s):  
Ricardo Pereira ◽  
João Mata ◽  
Ricardo S. Ramalho ◽  
Filipe M. Rosas ◽  
Beatriz Silva ◽  
...  

Author(s):  
Chenghan Xu ◽  
Fengyue Sun ◽  
Xingzhu Fan ◽  
Liang Huo ◽  
Depeng Yang ◽  
...  

The widespread Early Cretaceous plutons intruding along the southern Great Xing’an Range (SGXR) provide evidence for tectonic evolution of the region. Petrological, geochemical, zircon U–Pb geochronology and zircon Hf isotopic studies are conducted on intrusions from Bianjiadayuan and Hongling areas. These suites classify as A2-type granites and monzodiorites, respectively. The 138–133 Ma A2-type granites originated from partial melting of continental crustal materials at high temperatures and shallow depths with significant addition of juvenile mafic lower crust sourced from a metasomatized mantle. The 136–134 Ma monzodiorites originated from the partial melting of an enriched mantle that was modified by melts of a previously subducted slab coupled with crustal contamination. The Early Cretaceous magmatism in the SGXR occurred in two periods: ∼145–136 Ma (peak at ∼139 Ma; εHf (t) = 5 to 10) and ∼136–130 Ma (peak at ∼131 Ma; εHf (t) = −10 to 15). The Early Cretaceous granite–monzodiorite suite in the SGXR suggests a bimodal magmatism in an extensional setting. The ∼145–130 Ma magmatism may have been triggered by asthenospheric upwelling induced by the Mongol–Okhotsk oceanic slab breakoff and large-scale lithospheric delamination resulting from post-orogenic extension. The variation of subduction direction of the Paleo-Pacific Ocean likely triggered a change in stress regime at ca. 136 Ma and likely promoted the lithospheric delamination beneath the SGXR resulting in intense magmatism originating from various sources. As such, the Paleo-Pacific Oceanic subduction likely played an important role in the Early Cretaceous magmatism in the SGXR.


Lithos ◽  
2021 ◽  
pp. 106375
Author(s):  
Manuel Contreras-López ◽  
Luis Alberto Delgado-Argote ◽  
Bodo Weber ◽  
Xóchitl Guadalupe Torres-Carrillo ◽  
Dirk Frei ◽  
...  

2021 ◽  
Vol 217 ◽  
pp. 103605
Author(s):  
Xianzhi Cao ◽  
Nicolas Flament ◽  
Sanzhong Li ◽  
R. Dietmar Müller

Sign in / Sign up

Export Citation Format

Share Document