arc magmatism
Recently Published Documents


TOTAL DOCUMENTS

359
(FIVE YEARS 94)

H-INDEX

53
(FIVE YEARS 6)

Lithos ◽  
2022 ◽  
pp. 106590
Author(s):  
H.S. Moghadam ◽  
K. Hoernle ◽  
F. Hauff ◽  
D. Garbe-Schönberg ◽  
J.A. Pfänder
Keyword(s):  

Geosphere ◽  
2021 ◽  
Author(s):  
Jeffrey M. Trop ◽  
Jeff A. Benowitz ◽  
Carl S. Kirby ◽  
Matthew E. Brueseke

The Wrangell Arc in Alaska (USA) and adjacent volcanic fields in the Yukon provide a long-term record of interrelations between flat-slab subduction of the Yakutat microplate, strike-slip translation along the Denali–Totschunda–Duke River fault system, and magmatism focused within and proximal to a Cretaceous suture zone. Detrital zircon (DZ) U-Pb (n = 2640) and volcanic lithic (DARL) 40Ar/39Ar dates (n = 2771) from 30 modern river sediment samples document the spatial-temporal evolution of Wrangell Arc magmatism, which includes construction of some of the largest Quaternary volcanoes on Earth. Mismatches in DZ and DARL date distributions highlight the impact of variables such as mineral fertility and downstream mixing/dilution on resulting provenance signatures. Geochronologic data document the initiation of Wrangell Arc magmatism at ca. 30–17 Ma along both sides of the Totschunda fault on the north flank of the Wrangell–St. Elias Mountains in Alaska, followed by southeastward progression of magmatism at ca. 17–10 Ma along the Duke River fault in the Yukon. This spatial-temporal evolution is attributable to dextral translation along intra-arc, strike-slip faults and a change in the geometry of the subducting slab (slab curling/steepening). Magmatism then progressed generally westward outboard of the Totschunda and Duke River faults at ca. 13–6 Ma along the southern flank of the Wrangell–St. Elias Mountains in Alaska and then northwestward from ca. 6 Ma to present in the western Wrangell Mountains. The 13 Ma to present spatial-temporal evolution is consistent with dextral translation along intra-arc, strike-slip faults and previously documented changes in plate boundary conditions, which include an increase in plate convergence rate and angle at ca. 6 Ma. Voluminous magmatism is attributed to shallow subduction-related flux melting and slab edge melting that is driven by asthenospheric upwelling along the lateral edge of the Yakutat flat slab. Magmatism was persistently focused within or adjacent to a remnant suture zone, which indicates that upper plate crustal heterogeneities influenced arc magmatism. Rivers sampled also yield subordinate Paleozoic–Mesozoic DZ and DARL age populations that reflect earlier episodes of magmatism within underlying accreted terranes and match magmatic flare-ups documented along the Cordilleran margin.


Geosphere ◽  
2021 ◽  
Author(s):  
M. Robinson Cecil ◽  
George E. Gehrels ◽  
Margaret E. Rusmore ◽  
Glenn J. Woodsworth ◽  
Harold H. Stowell ◽  
...  

The southern Coast Mountain batholith was episodically active from Jurassic to Eocene time and experienced four distinct high magmatic flux events during that period. Similar episodicity has been recognized in arcs worldwide, yet the mechanism(s) driving such punctuated magmatic behavior are debated. This study uses zircon Hf and O isotopes, with whole-rock and mineral geochemistry, to track spatiotemporal changes in southern Coast Mountains batholith melt sources and to evaluate models of flare-up behavior and crust formation in Cordilleran arc systems. Zircon Hf isotope analysis yielded consistently primitive values, with all zircon grains recording initial εHf between +6 and +16. The majority (97%) of zircons analyzed yielded δ18O values between 4.2‰ and 6.5‰, and only five grains recorded values of up to 8.3‰. These isotopic results are interpreted to reflect magmatism dominated by mantle melting during all time periods and across all areas of the southern batholith, which argues against the periodic input of more melt-fertile crustal materials as the driver of episodic arc magmatism. They also indicate that limited crustal recycling is needed to produce the large volumes of continental crust generated in the batholith. Although the isotopic character of intrusions is relatively invariant through time, magmas emplaced during flare-ups record higher Sr/Y and La/Yb(N) and lower zircon Ti and Yb concentrations, which is consistent with melting in thickened crust with garnet present as a fractionating phase. Flare-ups are also temporally associated with periods when the southern Coast Mountains batholith both widens and advances inboard. We suggest that the landward shift of the arc into more fertile lithospheric mantle domains triggers voluminous magmatism and is accompanied by magmatic and/or tectonic thickening. Overall, these results demonstrate that the magmatic growth of Cordilleran arcs can be spatially and temporally complex without requiring variability in the contributions of crust and/or mantle to the batholith.


2021 ◽  
Vol 359 ◽  
pp. 106192
Author(s):  
João Paulo A. Pitombeira ◽  
Wagner da S. Amaral ◽  
Ticiano J.S. dos Santos ◽  
Elton L. Dantas ◽  
Reinhardt A. Fuck

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jun-Yong Li ◽  
Ming Tang ◽  
Cin-Ty A. Lee ◽  
Xiao-Lei Wang ◽  
Zhi-Dong Gu ◽  
...  

AbstractIn subduction zones, materials on Earth’s surface can be transported to the deep crust or mantle, but the exact mechanisms and the nature of the recycled materials are not fully understood. Here, we report a set of migmatites from western Yangtze Block, China. These migmatites have similar bulk compositions as forearc sediments. Zircon age distributions and Hf–O isotopes indicate that the precursors of the sediments were predominantly derived from juvenile arc crust itself. Using phase equilibria modeling, we show that the sediments experienced high temperature-to-pressure ratio metamorphism and were most likely transported to deep arc crust by intracrustal thrust faults. By dating the magmatic zircon cores and overgrowth rims, we find that the entire rock cycle, from arc magmatism, to weathering at the surface, then to burial and remelting in the deep crust, took place within ~10 Myr. Our findings highlight thrust faults as an efficient recycling channel in compressional arcs and endogenic recycling as an important mechanism driving internal redistribution and differentiation of arc crust.


Author(s):  
Gideon Rosenbaum ◽  
John T. Caulfield ◽  
Teresa Ubide ◽  
Jack F. Ward ◽  
Dan Sandiford ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document