scholarly journals Slumping in the Upper Jurassic Baisakhi Formation of the Jaisalmer Basin, western India: Sign of synsedimentary tectonics?

2017 ◽  
Vol 6 (4) ◽  
pp. 321-332 ◽  
Author(s):  
Matthias Alberti ◽  
Dhirendra K. Pandey ◽  
Jitendra K. Sharma ◽  
Narendra K. Swami ◽  
Alfred Uchman
Facies ◽  
2020 ◽  
Vol 67 (1) ◽  
Author(s):  
Franz T. Fürsich ◽  
Matthias Alberti ◽  
Dhirendra K. Pandey

AbstractThe siliciclastic Jhuran Formation of the Kachchh Basin, a rift basin bordering the Malagasy Seaway, documents the filling of the basin during the late syn-rift stage. The marine, more than 700-m-thick Tithonian part of the succession in the western part of the basin is composed of highly asymmetric transgressive–regressive cycles and is nearly unfossiliferous except for two intervals, the Lower Tithonian Hildoglochiceras Bed (HB) and the upper Lower Tithonian to lowermost Cretaceous Green Ammonite Beds (GAB). Both horizons represent maximum flooding zones (MFZ) and contain a rich fauna composed of ammonites and benthic macroinvertebrates. Within the HB the benthic assemblages change, concomitant with an increase in the carbonate content, from the predominantly infaunal “Lucina” rotundata to the epifaunal Actinostreon marshii and finally to the partly epifaunal, partly infaunal Eoseebachia sowerbyana assemblage. The Green Ammonite Beds are composed of three highly ferruginous beds, which are the MFZ of transgressive–regressive cycles forming the MFZ of a 3rd-order depositional sequence. The GAB are highly ferruginous, containing berthieroid ooids and grains. GAB I is characterized by the reworked Gryphaea moondanensis assemblage, GAB II by an autochthonous high-diversity assemblage dominated by the brachiopods Acanthorhynchia multistriata and Somalithyris lakhaparensis, whereas GAB III is devoid of fossils except for scarce ammonites. The GAB are interpreted to occupy different positions along an onshore–offshore transect with increasing condensation offshore. Integrated analyses of sedimentological, taphonomic, and palaeoecological data allow to reconstruct, in detail, the sequence stratigraphic architecture of sedimentary successions and to evaluate their degree of faunal condensation.


2021 ◽  
Vol 51 (1) ◽  
pp. 4-13
Author(s):  
Sonal Khanolkar ◽  
Tathagata Roy Choudhury ◽  
Pratul Kumar Saraswati ◽  
Santanu Banerjee

ABSTRACT This study focuses on marine sediments of the late Paleocene-early Eocene (∼55.5–49 Ma) interval from the Jaisalmer Basin of western India. It demarcates the Paleocene Eocene Thermal Maximum (PETM) using foraminiferal biostratigraphy and carbon isotope stratigraphy. A negative carbon isotope excursion of 4.5‰ delineates the PETM within the basin. We demarcate five foraminiferal biofacies using the detrended correspondence analysis. These reflect characteristics of ecology, bathymetry, relative age, and environment of deposition of the foraminifera. They record the response of foraminifera to the warmth of the PETM. Biofacies A was deposited within an inner neritic setting ∼55.5 Ma and includes benthic foraminifera Haplophragmoides spp., Ammobaculites spp., and Lenticulina spp. The presence of Pulsiphonina prima and Valvulineria scorbiculata in Biofacies B suggests an increase in runoff conditions in the basin. Fluctuating trophic conditions prevailed between ∼54–50 Ma. It is evidenced by alternating Biofacies C (endobenthic and chiloguembelinids of eutrophic conditions) and Biofacies D (epibenthic and acarininids of oligotrophic conditions). Biofacies E is dominated by deep-dwelling parasubbotinids, indicating an increase in bathymetry, possibly corresponding to the Early Eocene Climatic Optimum (∼49 Ma).


Geologos ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 51-73 ◽  
Author(s):  
Asma A. Ghaznavi ◽  
M.A. Quasim ◽  
A.H.M. Ahmad ◽  
Sumit K. Ghosh

Abstract Grain size analysis is an important sedimentological tool used to unravel hydrodynamic conditions, mode of transportation and deposition of detrital sediments. For the present study, detailed grain size analysis was carried out in order to decipher the palaeodepositional environment of Middle–Upper Jurassic rocks of the Ler Dome (Kachchh, western India), which is further reinforced by facies analysis. Microtextures were identified as grooves, straight steps and V-shaped pits, curved steps and solution pits suggesting the predominance of chemical solution activity. Grain size statistical parameters (Graphic and Moment parameters) were used to document depositional processes, sedimentation mechanisms and conditions of hydrodynamic energy, as well as to discriminate between various depositional environments. The grain size parameters show that most of the sandstones are medium- to coarse-grained, moderately to well sorted, strongly fine skewed to fine skewed and mesokurtic to platykurtic in nature. The abundance of medium- to coarse-grained sandstones indicates fluctuating energy levels of the deposition medium and sediment type of the source area. The bivariate plots show that the samples are mostly grouped, except for some samples that show a scattered trend, which is either due to a mixture of two modes in equal proportion in bimodal sediments or good sorting in unimodal sediments. The linear discriminant function analysis is predominantly indicative of turbidity current deposits under shallow-marine conditions. The C-M plots indicate that the sediments formed mainly by rolling to bottom suspension and rolling condition in a beach subenvironment. Log probability curves show that the mixing between the suspension and saltation populations is related to variable energy conditions.


2020 ◽  
pp. 1-11
Author(s):  
Krishna Kumar ◽  
Pragya Pandey ◽  
Sunil Bajpai ◽  
Debasish Bhattacharya ◽  
Bindhyachal Pandey

Geologos ◽  
2018 ◽  
Vol 24 (2) ◽  
pp. 137-150 ◽  
Author(s):  
Jaquilin K. Joseph ◽  
Satish J. Patel

Abstract Ancient deltaic facies are difficult to differentiate from tidally influenced shallow-marine facies. The Wagad Sandstone Formation of the Wagad Highland (eastern Kachchh Basin) is typified by offshore and deltaic facies with sedimentary characteristics that represent different conditions of hydrodynamics and related depositional processes. The study area, the Adhoi Anticline, constitutes a ~154-m-thick, shale-dominated sequence with progressive upward intercalations of bioturbated micritic sandstone and quartz arenite. Two thick Astarte beds (sandy allochemic limestone), with an erosional base and gravel blanketing, illustrate tidal amplification and high-energy stochastic events such as storms. Sedimentological characteristics document three depositional facies: an offshore, shale-dominated sequence prograding to proximal prodeltaic micritic sandstone and quartz arenite with sandy allochemic limestones, further prograding to mouth bars and abandoned channel deposits. The Wagad Sandstone Formation displays depositional environmental conditions that are dissimilar from those of coeval deposits in Kachchh sub-basins as well as on regional and global scales. This is attributed to a reactivation of the Kachchh Mainland and South Wagad faults which resulted in detachment and uplift of the Wagad block which then experienced prograding deltaic conditions.


Sign in / Sign up

Export Citation Format

Share Document