scholarly journals Transient activation of notch signaling enhances endogenous stromal cell expansion and subsequent bone defect repair

2021 ◽  
Vol 31 ◽  
pp. 26-32
Author(s):  
Guangxi Wang ◽  
Jinglong Yan ◽  
Hao Zhang ◽  
Patrick Massey ◽  
J. Steven Alexander ◽  
...  
Author(s):  
Zhou-Shan Tao ◽  
Tian-Lin Li ◽  
Hong-Guang Xu ◽  
Min Yang

AbstractThe purpose was to observe whether valproic acid (VPA) has a positive effect on bone-defect repair via activating the Notch signaling pathway in an OVX rat model. The MC3T3-E1 cells were cocultured with VPA and induced to osteogenesis, and the osteogenic activity was observed by alkaline phosphatase (ALP) staining, Alizarin Red (RES) staining and Western blotting (WB). Then the hydrogel-containing VPA was implanted into the femoral epiphysis bone-defect model of ovariectomized (OVX) rats for 12 weeks. Micro-CT, biomechanical testing, histology, immunofluorescence, RT-qPCR, and WB analysis were used to observe the therapeutic effect and explore the possible mechanism. ALP and ARS staining and WB results show that the cell mineralization, osteogenic activity, and protein expression of ALP, OPN, RUNX-2, OC, Notch 1, HES1, HEY1, and JAG1 of VPA group is significantly higher than the control group. Micro-CT, biomechanical testing, histology, immunofluorescence, and RT-qPCR evaluation show that group VPA presented the stronger effect on bone strength, bone regeneration, bone mineralization, higher expression of VEGFA, BMP-2, ALP, OPN, RUNX-2, OC, Notch 1, HES1, HEY1, and JAG1 of VPA when compared with OVX group. Our current study demonstrated that local treatment with VPA could stimulate repair of femoral condyle defects, and these effects may be achieved by activating Notch signaling pathway and acceleration of blood vessel and bone formation.


2011 ◽  
Vol 77 (4) ◽  
pp. 439-446 ◽  
Author(s):  
Adalberto Novaes Silva ◽  
José Américo de Oliveira ◽  
Maria Célia Jamur ◽  
José Ari Gualberto Junqueira ◽  
Vani Maria Correa ◽  
...  

Author(s):  
Xinyun Zhai ◽  
Changshun Ruan ◽  
Jie Shen ◽  
Chuping Zheng ◽  
Xiaoli Zhao ◽  
...  

Using nanoclay as the physical crosslinker, a novel clay-based nanocomposite hydrogel with attractive mechanical properties has be obtained, and the gradual release of intrinsic Mg2+ and Si4+ endows the system with excellent osteogenesis.


2014 ◽  
Vol 9 (1) ◽  
pp. 41-51 ◽  
Author(s):  
Josephine Fang ◽  
Zhi Yang ◽  
ShihJye Tan ◽  
Charisse Tayag ◽  
Marcel E Nimni ◽  
...  

2021 ◽  
Vol 17 (7) ◽  
pp. 1330-1338
Author(s):  
Shibai Zhu ◽  
Xiaotian Zhang ◽  
Xi Chen ◽  
Yiou Wang ◽  
Shanni Li ◽  
...  

The best way in which to prepare scaffolds with good biological properties is an urgent problem in the field of tissue engineering. In this paper we discuss the preparation of nano-hydroxyapatite scaffold of recombinant human bone morphogenetic protein-2 (rhBMP-2) and its application in bone defect repair. rhBMP-2 reagent was dissolved in 1 mol/L sodium dihydrogen phosphate solution, and the rhBMP-2 solution was added to the nano-hydroxyapatite artificial bone with a 100 μL glass micro dropper at the rate of 10 drops/min to obtain Nano-HA/rhBMP-2 composite artificial bone. In in vivo experiments, rabbits were fixed on an operating table, a 2 cm longitudinal incision was made in the middle part of the radial forearm, and the radius was cut with a wire saw and periosteum, 2.5 cm away from the distal radius. After washing the wound with normal saline, Adv-hBMP-2/MC3T3-E1 nano-HA composite artificial bone, MC3T3-E1 nan-HA composite artificial bone, or Nano-HA artificial bone were implanted in different groups. The artificial bone scaffold prepared in this study has a stronger ability to repair bone defects than the alternatives, and is a promising prospect for the clinical treatment of bone defects.


Author(s):  
Xiaotao Xing ◽  
Haisen Huang ◽  
Xin Gao ◽  
Jian Yang ◽  
Qi Tang ◽  
...  

2013 ◽  
Vol 9 (5) ◽  
pp. 6711-6722 ◽  
Author(s):  
S.-H. Chen ◽  
M. Lei ◽  
X.-H. Xie ◽  
L.-Z. Zheng ◽  
D. Yao ◽  
...  

2020 ◽  
pp. 241-260
Author(s):  
Yuehuei H. An ◽  
Richard J. Friedman

Sign in / Sign up

Export Citation Format

Share Document