scholarly journals The symmetric tensor product on the Drinfeld centre of a symmetric fusion category

2020 ◽  
Vol 224 (8) ◽  
pp. 106348 ◽  
Author(s):  
Thomas A. Wasserman
Author(s):  
Abraham Rueda Zoca ◽  
Pedro Tradacete ◽  
Ignacio Villanueva

We study the Daugavet property in tensor products of Banach spaces. We show that $L_{1}(\unicode[STIX]{x1D707})\widehat{\otimes }_{\unicode[STIX]{x1D700}}L_{1}(\unicode[STIX]{x1D708})$ has the Daugavet property when $\unicode[STIX]{x1D707}$ and $\unicode[STIX]{x1D708}$ are purely non-atomic measures. Also, we show that $X\widehat{\otimes }_{\unicode[STIX]{x1D70B}}Y$ has the Daugavet property provided $X$ and $Y$ are $L_{1}$ -preduals with the Daugavet property, in particular, spaces of continuous functions with this property. With the same techniques, we also obtain consequences about roughness in projective tensor products as well as the Daugavet property of projective symmetric tensor products.


2018 ◽  
Vol 29 (02) ◽  
pp. 1850012 ◽  
Author(s):  
Sonia Natale

We show that the core of a weakly group-theoretical braided fusion category [Formula: see text] is equivalent as a braided fusion category to a tensor product [Formula: see text], where [Formula: see text] is a pointed weakly anisotropic braided fusion category, and [Formula: see text] or [Formula: see text] is an Ising braided category. In particular, if [Formula: see text] is integral, then its core is a pointed weakly anisotropic braided fusion category. As an application we give a characterization of the solvability of a weakly group-theoretical braided fusion category. We also prove that an integral modular category all of whose simple objects have Frobenius–Perron dimension at most 2 is necessarily group-theoretical.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Masaru Nishihara ◽  
Kwang Ho Shon

LetEandFbe locally convex spaces overCand letP(nE;F)be the space of all continuousn-homogeneous polynomials fromEtoF. We denote by⨂n,s,πEthen-fold symmetric tensor product space ofEendowed with the projective topology. Then, it is well known that each polynomialp∈P(nE;F)is represented as an element in the spaceL(⨂n,s,πE;F)of all continuous linear mappings from⨂n,s,πEtoF. A polynomialp∈P(nE;F)is said to beof weak typeif, for every bounded setBofE,p|Bis weakly continuous onB. We denote byPw(nE;F)the space of alln-homogeneous polynomials of weak type fromEtoF. In this paper, in case thatEis a DF space, we will give the tensor product representation of the spacePw(nE;F).


Author(s):  
Akitoshi ITAI ◽  
Arao FUNASE ◽  
Andrzej CICHOCKI ◽  
Hiroshi YASUKAWA

Author(s):  
Xinyu Zhao ◽  
Biao Wang ◽  
Shuqian Zhu ◽  
Jun-e Feng

1998 ◽  
Vol 5 (5) ◽  
pp. 401-414
Author(s):  
M. Bakuradze

Abstract A formula is given to calculate the last n number of symplectic characteristic classes of the tensor product of the vector Spin(3)- and Sp(n)-bundles through its first 2n number of characteristic classes and through characteristic classes of Sp(n)-bundle. An application of this formula is given in symplectic cobordisms and in rings of symplectic cobordisms of generalized quaternion groups.


2021 ◽  
Vol 5 (2) ◽  
pp. 42
Author(s):  
María A. Navascués ◽  
Ram Mohapatra ◽  
Md. Nasim Akhtar

In this paper, we define fractal bases and fractal frames of L2(I×J), where I and J are real compact intervals, in order to approximate two-dimensional square-integrable maps whose domain is a rectangle, using the identification of L2(I×J) with the tensor product space L2(I)⨂L2(J). First, we recall the procedure of constructing a fractal perturbation of a continuous or integrable function. Then, we define fractal frames and bases of L2(I×J) composed of product of such fractal functions. We also obtain weaker families as Bessel, Riesz and Schauder sequences for the same space. Additionally, we study some properties of the tensor product of the fractal operators associated with the maps corresponding to each variable.


Sign in / Sign up

Export Citation Format

Share Document