NMR and mass spectrometric characterization of vinblastine, vincristine and some new related impurities – Part I

2013 ◽  
Vol 84 ◽  
pp. 293-308 ◽  
Author(s):  
Zsófia Dubrovay ◽  
Viktor Háda ◽  
Zoltán Béni ◽  
Csaba Szántay
2013 ◽  
Vol 84 ◽  
pp. 309-322 ◽  
Author(s):  
Viktor Háda ◽  
Zsófia Dubrovay ◽  
Ágnes Lakó-Futó ◽  
János Galambos ◽  
Zoltán Gulyás ◽  
...  

1991 ◽  
Author(s):  
K. Balasaunmugam ◽  
K. G. Owens ◽  
K. F. Hsueh ◽  
P. Hoontrakul ◽  
M. A. Olsen

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2123
Author(s):  
Makuachukwu F. Mbaegbu ◽  
Puspa L. Adhikari ◽  
Ipsita Gupta ◽  
Mathew Rowe

Determining gas compositions from live well fluids on a drilling rig is critical for real time formation evaluation. Development and utilization of a reliable mass spectrometric method to accurately characterize these live well fluids are always challenging due to lack of a robust and effectively selective instrument and procedure. The methods currently utilized need better calibration for the characterization of light hydrocarbons (C1–C6) at lower concentrations. The primary goal of this research is to develop and optimize a powerful and reliable analytical method to characterize live well fluid using a quadruple mass spectrometer (MS). The mass spectrometers currently being used in the field have issues with detection, spectra deconvolution, and quantification of analytes at lower concentrations (10–500 ppm), particularly for the lighter (<30 m/z) hydrocarbons. The objectives of the present study are thus to identify the detection issues, develop and optimize a better method, calibrate and QA/QC the MS, and validate the MS method in lab settings. In this study, we used two mass spectrometers to develop a selective and precise method to quantitatively analyze low level lighter analytes (C1–C6 hydrocarbons) with masses <75 m/z at concentrations 10–500 ppm. Our results suggest that proper mass selection like using base peaks with m/z 15, 26, 41, 43, 73, and 87, respectively, for methane, ethane, propane, butane, pentane, and hexane can help detect and accurately quantify hydrocarbons from gas streams. This optimized method in quadrupole mass spectrometer (QMS) will be invaluable for early characterization of the fluid components from a live hydrocarbon well in the field in real time.


2017 ◽  
Vol 100 (4) ◽  
pp. 1029-1037 ◽  
Author(s):  
Liang Zou ◽  
Lili Sun ◽  
Hui Zhang ◽  
Wenkai Hui ◽  
Qiaogen Zou ◽  
...  

Abstract The characterization of process-related impurities and degradation products of safinamide mesilate (SAFM) in bulk drug and a stability-indicating HPLC method for the separation and quantification of all the impurities were investigated. Four process-related impurities (Imp-B, Imp-C, Imp-D, and Imp-E) were found in the SAFM bulk drug. Five degradation products (Imp-A, Imp-C, Imp-D, Imp-E, and Imp-F) were observed in SAFM under oxidative conditions. Imp-C, Imp-D, and Imp-E were also degradation products and process-related impurities. Remarkably, one new compound, identified as (S)-2-[4-(3-fluoro-benzyloxy) benzamido] propanamide (i.e., Imp-D), is being reported here as an impurity for the first time. Furthermore, the structures of the aforementioned impurities were characterized and confirmed via IR, NMR, and MS techniques, and the most probable formation mechanisms of all impurities proposed according to the synthesis route. Optimum separation was achieved on an Inertsil ODS-3 column (250 × 4.6 mm, 5 μm), using 0.1% formic acid in water (pH adjusted to 5.0) and acetonitrile as the mobile phase in gradient mode. The proposed method was found to be stability-indicating, precise, linear, accurate, sensitive, and robust for the quantitation of SAFM and its process-related substances, including its degradation products.


2000 ◽  
Vol 180 (1) ◽  
pp. 195-199 ◽  
Author(s):  
L. Gravier ◽  
H. Makino ◽  
K. Arai ◽  
H. Sasaki ◽  
K. Kimura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document