Improved efficiency of dye-sensitized solar cells applied with nanostructured N–F doped TiO2 electrode

2012 ◽  
Vol 73 (7) ◽  
pp. 911-916 ◽  
Author(s):  
Shuming Yang ◽  
Hongbin Xue ◽  
Hongjun Wang ◽  
Huizhi Kou ◽  
Jichao Wang ◽  
...  
2011 ◽  
Vol 64 (6) ◽  
pp. 820 ◽  
Author(s):  
Fuzhi Huang ◽  
Yi-Bing Cheng ◽  
Rachel A. Caruso

Porous aluminium doped TiO2 was prepared through a sol–gel process in the presence of a template. The doping enlarges the band-gap of the anatase TiO2, which modifies the TiO2 electrical properties. The porous Al/TiO2 films were assembled into dye-sensitized solar cells. A 45 mV enhancement of open-circuit photovoltage and 11% increase of fill factor at 2 wt-% doping concentration, and 8.6% improvement of the overall efficiency at 0.5 wt-% doping concentration were achieved relative to that of a cell containing non-doped TiO2 under the same conditions. This advance is attributed to the increase in conductivity with the Al-doping of the TiO2 electrode.


Author(s):  
Sehar Shakir ◽  
Hafiz M. Abd-ur-Rehman

Dye Sensitized Solar Cells (DSSCs) are low cost solar cells offering big room for improvements in its photovoltaic performance by maneuvering semiconductor properties, dye adsorption, electrolyte stability etc. For the first time, we have co-doped TiO2 with silver (Ag) and copper (Cu) to enhance both charge collection and light absorption as well as reduce recombinations for DSSCs. For high solar cell efficiency 3wt% Cu and 3wt% Cu:Ag doped TiO2 nps were successfully prepared for Dye Sensitized Solar Cells (DSSCs). Modified photoanode was prepared using surface adsorbed N719 dye on doctor blade coated TiO2, Cu:TiO2 and Cu:Ag:TiO2 thin films. It was observed that optimum doping concentration of Cu and silver was 3wt% each. DSSCs with Cu:Ag:TiO2 thin film showed higher conversion efficiency under full sunlight illumination when compared to DSSCs assembled using Cu:TiO2 and undoped TiO2. The obtained efficiencies for DSSCs with undoped TiO2, Cu:TiO2 and Cu:Ag:TiO2 photoanodes were 2%, 2.7% and 4.5% respectively. Solar cells assembled with Cu only doped TiO2 electrode when compared with cells assembled using pristine TiO2, showed an increase in Voc while Jsc was decreased Furthermore, cells doped with both Ag and Cu showed enhancement in both Voc and Jsc. The enhancement in cell performance has been discussed in context of morphology, crystal phase, presence of bonds etc. in nanoparticles. Considering overall better performance, Cu:Ag doped TiO2 photoanodes can be considered as potential photoanodes in DSSCs.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3918
Author(s):  
Ratshilumela S. Dima ◽  
Lutendo Phuthu ◽  
Nnditshedzeni E. Maluta ◽  
Joseph K. Kirui ◽  
Rapela R. Maphanga

Titanium dioxide (TiO2) polymorphs have recently gained a lot of attention in dye-sensitized solar cells (DSSCs). The brookite polymorph, among other TiO2 polymorphs, is now becoming the focus of research in DSSC applications, despite the difficulties in obtaining it as a pure phase experimentally. The current theoretical study used different nonmetals (C, S and N) and (C-S, C-N and S-N) as dopants and co-dopants, respectively, to investigate the effects of mono-doping and co-doping on the electronic, structural, and optical structure properties of (210) TiO2 brookite surfaces, which is the most exposed surface of brookite. The results show that due to the narrowing of the band gap and the presence of impurity levels in the band gap, all mono-doped and co-doped TiO2 brookite (210) surfaces exhibit some redshift. In particular, the C-doped, and C-N co-doped TiO2 brookite (210) surfaces exhibit better absorption in the visible region of the electromagnetic spectrum in comparison to the pure, S-doped, N-doped, C-S co-doped and N-S co-doped TiO2 brookite (210) surfaces.


Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 198 ◽  
Author(s):  
Michèle Chevrier ◽  
Alberto Fattori ◽  
Laurent Lasser ◽  
Clément Kotras ◽  
Clémence Rose ◽  
...  

Chlorophyll a derivatives were integrated in “all solid-state” dye sensitized solar cells (DSSCs) with a mesoporous TiO2 electrode and 2′,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene as the hole-transport material. Despite modest power conversion efficiencies (PCEs) between 0.26% and 0.55% achieved for these chlorin dyes, a systematic investigation was carried out in order to elucidate their main limitations. To provide a comprehensive understanding of the parameters (structure, nature of the anchoring group, adsorption …) and their relationship with the PCEs, density functional theory (DFT) calculations, optical and photovoltaic studies and electron paramagnetic resonance analysis exploiting the 4-carboxy-TEMPO spin probe were combined. The recombination kinetics, the frontier molecular orbitals of these DSSCs and the adsorption efficiency onto the TiO2 surface were found to be the key parameters that govern their photovoltaic response.


2009 ◽  
Vol 113 (16) ◽  
pp. 6878-6882 ◽  
Author(s):  
Sangwook Lee ◽  
Jun Hong Noh ◽  
Hyun Soo Han ◽  
Dong Kyun Yim ◽  
Dong Hoe Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document