Al-doped TiO2 Photoanode for Dye-Sensitized Solar Cells

2011 ◽  
Vol 64 (6) ◽  
pp. 820 ◽  
Author(s):  
Fuzhi Huang ◽  
Yi-Bing Cheng ◽  
Rachel A. Caruso

Porous aluminium doped TiO2 was prepared through a sol–gel process in the presence of a template. The doping enlarges the band-gap of the anatase TiO2, which modifies the TiO2 electrical properties. The porous Al/TiO2 films were assembled into dye-sensitized solar cells. A 45 mV enhancement of open-circuit photovoltage and 11% increase of fill factor at 2 wt-% doping concentration, and 8.6% improvement of the overall efficiency at 0.5 wt-% doping concentration were achieved relative to that of a cell containing non-doped TiO2 under the same conditions. This advance is attributed to the increase in conductivity with the Al-doping of the TiO2 electrode.

Author(s):  
Sehar Shakir ◽  
Hafiz M. Abd-ur-Rehman

Dye Sensitized Solar Cells (DSSCs) are low cost solar cells offering big room for improvements in its photovoltaic performance by maneuvering semiconductor properties, dye adsorption, electrolyte stability etc. For the first time, we have co-doped TiO2 with silver (Ag) and copper (Cu) to enhance both charge collection and light absorption as well as reduce recombinations for DSSCs. For high solar cell efficiency 3wt% Cu and 3wt% Cu:Ag doped TiO2 nps were successfully prepared for Dye Sensitized Solar Cells (DSSCs). Modified photoanode was prepared using surface adsorbed N719 dye on doctor blade coated TiO2, Cu:TiO2 and Cu:Ag:TiO2 thin films. It was observed that optimum doping concentration of Cu and silver was 3wt% each. DSSCs with Cu:Ag:TiO2 thin film showed higher conversion efficiency under full sunlight illumination when compared to DSSCs assembled using Cu:TiO2 and undoped TiO2. The obtained efficiencies for DSSCs with undoped TiO2, Cu:TiO2 and Cu:Ag:TiO2 photoanodes were 2%, 2.7% and 4.5% respectively. Solar cells assembled with Cu only doped TiO2 electrode when compared with cells assembled using pristine TiO2, showed an increase in Voc while Jsc was decreased Furthermore, cells doped with both Ag and Cu showed enhancement in both Voc and Jsc. The enhancement in cell performance has been discussed in context of morphology, crystal phase, presence of bonds etc. in nanoparticles. Considering overall better performance, Cu:Ag doped TiO2 photoanodes can be considered as potential photoanodes in DSSCs.


2011 ◽  
Vol 383-390 ◽  
pp. 5510-5515
Author(s):  
Tien Tsan Hung

Novel phthalocyanine derivative and azo derivative have been synthesized as photosensitizers for the dye-sensitized solar cells (DSSCs). We used sol-gel method to prepare the titanium oxide (TiO2) membrane electrode of the DSSCs. The crystalline phase and surface morphology of TiO2 were characterized by using X-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM) to investigate the effects of processing parameters on the films characteristic, microstructure and thickness. The performance of DSSCs was characterized by using electrochemical impedance spectroscopy (EIS) and current-voltage curve analysis. The sensitizing properties of phthalocyanine derivative, azo derivative and mixed dyes were studied, and it was found that the cell consisted of mixed dyes generated the highest power conversion efficiency () of 2.3 %, short circuit photocurrent density (Jsc) of 13.6 mA cm-2, open circuit photovoltage (Voc) of 0.46 V and fill factor (FF) of 0.37 under simulated AM 1.5 irradiation (100 mW cm-2) with a active area of 0.25 cm2.


2012 ◽  
Vol 512-515 ◽  
pp. 1533-1536
Author(s):  
Yan Xiang Wang ◽  
Sun Jian ◽  
Bing Xin Zhao

In this paper, ZnO nanopowders and dye sensitized solar cells were prepared by sol-gel and screen printing method, respectively. First, ZnO nanopowders were synthesized by using zinc acetate, ethanol and diethanolamined as raw materials. The effects of Zn2+ molar concentration on the microstructure and photocatalytic efficiency of ZnO nanopowders were investigated. When Zn2+molar concentration were 0.4M, 0.6M, 0.8M and 1.2M, ZnO nanoparticles with diameter of about 80~100nm were obtained. When Zn2+ molar concentration reached 2.4M, ZnO nanobowls consisted of nanoparticles with diameter about 80~100nm were synthesized. When Zn2+molar concentration reached 3.6M, ZnO nanoparticles were obtained, and particle size distribution of obtained ZnO nanoparticles became broader. Methyl orange degradation rate of ZnO nanopowders prepared with 0.4M, after treated by ultraviolet radiation for 8 hours, were up to 88.5%. ZnO nanopowders prepared with 1.2M and 3.6M were assembled into solar cells. The properties of the solar cell prepared with 1.2M were optimal. The short-circuit photocurrent, open-circuit photovoltage, fill factor and efficiency were 14.72 mA/cm2, 0.649V, 0.332 and 0.914%, respectively.


2012 ◽  
Vol 73 (7) ◽  
pp. 911-916 ◽  
Author(s):  
Shuming Yang ◽  
Hongbin Xue ◽  
Hongjun Wang ◽  
Huizhi Kou ◽  
Jichao Wang ◽  
...  

2011 ◽  
Vol 1303 ◽  
Author(s):  
Julia Waltermann ◽  
Kay-Michael Günther ◽  
Stefan Kontermann ◽  
Siegfried R. Waldvogel ◽  
Wolfgang Schade

ABSTRACTDye-sensitized solar cells composed of an n-doped ZnO nanowire array and a p-doped polymer layer appears to be a promising candidate for low-cost production of environment-friendly solar cells. In this work, we investigate hybrid devices consisting of a transparent conducting oxide (TCO) substrate, ZnO-nanowires (ZnO-NW) or a sol-gel prepared ZnO layer, a ruthenium dye (N719) and a PEDOT:PSS or P3HT layer. The dense polycrystalline ZnO layer is able to prevent short circuits, which have a strong effect on the performance of the solar cells. This is demonstrated by the use of only the ZnO layer which improves the open circuit voltage by a factor of 2 and the efficiency by a factor of 1.7 compared to cells with nanowires. That indicates that the system combined with a thin but dense ZnO layer and NW grown on it will show further improvement. Furthermore three different TCO substrates were investigated. Impedance spectroscopy (IS) reveals at least one additional Schottky barrier formed with ZnO:Al substrates. Spectral photovoltage measurements clearly show distinct absorption features correlated with the ZnO and N719 dye.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 296 ◽  
Author(s):  
Nikolai Tsvetkov ◽  
Liudmila Larina ◽  
Jeung Ku Kang ◽  
Oleg Shevaleevskiy

The performance of dye-sensitized solar cells (DSCs) critically depends on the efficiency of electron transport within the TiO2-dye-electrolyte interface. To improve the efficiency of the electron transfer the conventional structure of the working electrode (WE) based on TiO2 nanoparticles (NPs) was replaced with TiO2 nanotubes (NTs). Sol-gel method was used to prepare undoped and Nb-doped TiO2 NPs and TiO2 NTs. The crystallinity and morphology of the WEs were characterized using XRD, SEM and TEM techniques. XPS and PL measurements revealed a higher concentration of oxygen-related defects at the surface of NPs-based electrodes compared to that based on NTs. Replacement of the conventional NPs-based TiO2 WE with alternative led to a 15% increase in power conversion efficiency (PCE) of the DSCs. The effect is attributed to the more efficient transfer of charge carriers in the NTs-based electrodes due to lower defect concentration. The suggestion was confirmed experimentally by electrical impedance spectroscopy measurements when we observed the higher recombination resistance at the TiO2 NTs-electrolyte interface compared to that at the TiO2 NPs-electrolyte interface. Moreover, Nb-doping of the TiO2 structures yields an additional 14% PCE increase. The application of Nb-doped TiO2 NTs as photo-electrode enables the fabrication of a DSC with an efficiency of 8.1%, which is 35% higher than that of a cell using a TiO2 NPs. Finally, NTs-based DSCs have demonstrated a 65% increase in the PCE value, when light intensity was decreased from 1000 to 10 W/m2 making such kind device be promising alternative indoor PV applications when the intensity of incident light is low.


2015 ◽  
Vol 121 (3) ◽  
pp. 1261-1269 ◽  
Author(s):  
Teresa Aguilar ◽  
Javier Navas ◽  
Rodrigo Alcántara ◽  
Concha Fernández-Lorenzo ◽  
Ginesa Blanco ◽  
...  

2007 ◽  
Vol 7 (2) ◽  
pp. 555-559 ◽  
Author(s):  
Elias Stathatos ◽  
Panagiotis Lianos

Dye-sensitized solar cells were made by using nanocrystalline titania deposited on Fluorine-doped SnO2 (FTO) electrodes. Nanocrystalline titania deposition was made by the sol–gel method using reverse micelles of bis(2-ethylhexyl) sulfosuccinate sodium salt (AOT) in cyclohexane as reaction medium. This surfactant could be easily removed from the deposited nanocomposite organic-inorganic film by simple rinsing with distilled water, without affecting titania adherence on FTO electrode. These nanocrystalline titania electrodes were used to make solar cells either without sintering or after sintering at various temperatures. Sintering extensively affected short circuit current but had small effect on device open-circuit voltage. Thus satisfactory photovoltaic response could be obtained even with devices made of non-sintered (room-temperature) titania.


Sign in / Sign up

Export Citation Format

Share Document