Alpha-momorcharin enhances Tobacco mosaic virus resistance in tobacco NN by manipulating jasmonic acid-salicylic acid crosstalk

2018 ◽  
Vol 223 ◽  
pp. 116-126 ◽  
Author(s):  
Ting Yang ◽  
Li-sha Zhu ◽  
Yao Meng ◽  
Rui Lv ◽  
Zhuo Zhou ◽  
...  
2014 ◽  
Vol 27 (6) ◽  
pp. 567-577 ◽  
Author(s):  
Feng Zhu ◽  
De-Hui Xi ◽  
Shu Yuan ◽  
Fei Xu ◽  
Da-Wei Zhang ◽  
...  

Systemic resistance is induced by pathogens and confers protection against a broad range of pathogens. Recent studies have indicated that salicylic acid (SA) derivative methyl salicylate (MeSA) serves as a long-distance phloem-mobile systemic resistance signal in tobacco, Arabidopsis, and potato. However, other experiments indicate that jasmonic acid (JA) is a critical mobile signal. Here, we present evidence suggesting both MeSA and methyl jasmonate (MeJA) are essential for systemic resistance against Tobacco mosaic virus (TMV), possibly acting as the initiating signals for systemic resistance. Foliar application of JA followed by SA triggered the strongest systemic resistance against TMV. Furthermore, we use a virus-induced gene-silencing–based genetics approach to investigate the function of JA and SA biosynthesis or signaling genes in systemic response against TMV infection. Silencing of SA or JA biosynthetic and signaling genes in Nicotiana benthamiana plants increased susceptibility to TMV. Genetic experiments also proved the irreplaceable roles of MeSA and MeJA in systemic resistance response. Systemic resistance was compromised when SA methyl transferase or JA carboxyl methyltransferase, which are required for MeSA and MeJA formation, respectively, were silenced. Moreover, high-performance liquid chromatography–mass spectrometry analysis indicated that JA and MeJA accumulated in phloem exudates of leaves at early stages and SA and MeSA accumulated at later stages, after TMV infection. Our data also indicated that JA and MeJA could regulate MeSA and SA production. Taken together, our results demonstrate that (Me)JA and (Me)SA are required for systemic resistance response against TMV.


1999 ◽  
Vol 354 (1383) ◽  
pp. 521-529 ◽  
Author(s):  
B. D. Harrison ◽  
T. M. A. Wilson

Beijerinck's (1898) recognition that the cause of tobacco mosaic disease was a novel kind of pathogen became the breakthrough which led eventually to the establishment of virology as a science. Research on this agent, tobacco mosaic virus (TMV), has continued to be at the forefront of virology for the past century. After an initial phase, in which numerous biological properties of TMV were discovered, its particles were the first shown to consist of RNA and protein, and X–ray diffraction analysis of their structure was the first of a helical nucleoprotein. In the molecular biological phase of research, TMV RNA was the first plant virus genome to be sequenced completely, its genes were found to be expressed by cotranslational particle disassembly and the use of subgenomic mRNA, and the mechanism of assembly of progeny particles from their separate parts was discovered. Molecular genetical and cell biological techniques were then used to clarify the roles and modes of action of the TMV non–structural proteins: the 126 kDa and 183 kDa replicase components and the 30 kDa cell–to–cell movement protein. Three different TMV genes were found to act as avirulence genes, eliciting hypersensitive responses controlled by specific, but different, plant genes. One of these (the N gene) was the first plant gene controlling virus resistance to be isolated and sequenced. In the biotechnological sphere, TMV has found several applications: as the first source of transgene sequences conferring virus resistance, in vaccines consisting of TMV particles genetically engineered to carry foreign epitopes, and in systems for expressing foreign genes. TMV owes much of its popularity as a research model to the great stability and high yield of its particles. Although modern methods have much decreased the need for such properties, and TMV may have a less dominant role in the future, it continues to occupy a prominent position in both fundamental and applied research.


2002 ◽  
Vol 3 (3) ◽  
pp. 167-172 ◽  
Author(s):  
Rajendra Marathe ◽  
Radhamani Anandalakshmi ◽  
Yule Liu ◽  
S. P. Dinesh-Kumar

2017 ◽  
Vol 107 (2) ◽  
pp. 148-157 ◽  
Author(s):  
Karen-Beth G. Scholthof

One of the seminal events in plant pathology was the discovery by Francis O. Holmes that necrotic local lesions induced on certain species of Nicotiana following rub-inoculation of Tobacco mosaic virus (TMV) was due to a specific interaction involving a dominant host gene (N). From this, Holmes had an idea that if the N gene from N. glutinosa was introgressed into susceptible tobacco, the greatly reduced titer of TMV would, by extension, prevent subsequent infection of tomato and pepper plants by field workers whose hands were contaminated with TMV from their use of chewing and smoking tobacco. The ultimate outcome has many surprising twists and turns, including Holmes’ failure to obtain fertile crosses of N. glutinosa × N. tabacum after 3 years of intensive work. Progress was made with N. digluta, a rare amphidiploid that was readily crossed with N. tabacum. And, importantly, the first demonstration by Holmes of the utility of interspecies hybridization for virus resistance was made with Capsicum (pepper) species with the identification of the L gene in Tabasco pepper, that he introgressed into commercial bell pepper varieties. Holmes’ findings are important as they predate Flor’s gene-for-gene hypothesis, show the use of interspecies hybridization for control of plant pathogens, and the use of the local lesion as a bioassay to monitor resistance events in crop plants.


2001 ◽  
Vol 14 (6) ◽  
pp. 715-724 ◽  
Author(s):  
Liang-Hui Ji ◽  
Shou-Wei Ding

The Cucumber mosaic virus (CMV)-encoded 2b protein (Cmv2b) is a nuclear protein that suppresses transgene RNA silencing in Nicotiana benthamiana. Cmv2b is an important virulence determinant but nonessential for systemic spread in N. glutinosa, in contrast to its indispensable role for systemic infections in cucumber. Here, we report that Cmv2b became essential for systemic infections in older N. glutinosa plants or in young seedlings pre-treated with salicylic acid (SA). Expression of Cmv2b from the genome of either CMV or Tobacco mosaic virus significantly reduced the inhibitory effect of SA on virus accumulation in inoculated leaves and systemic leaves. A close correlation is demonstrated between Cmv2b expression and a reduced SA-dependent induction of the alternative oxidase gene, a component of the recently proposed SA-regulated antiviral defense. These results collectively reveal a novel activity of Cmv2b in the inhibition of SA-mediated virus resistance. We used a N. tabacum line expressing a bacterial nahG transgene that degrades SA to provide evidence for a Cmv2b-sensitive antiviral defense mechanism in tobacco in which SA acts as a positive modifier but not as an essential component. We propose that SA induces virus resistance by potentiating a RNA-silencing antiviral defense that is targeted by Cmv2b.


1997 ◽  
Vol 9 (4) ◽  
pp. 547 ◽  
Author(s):  
Stephen Chivasa ◽  
Alex M. Murphy ◽  
Martin Naylor ◽  
John P. Carr

Sign in / Sign up

Export Citation Format

Share Document