Three-dimensional heat and mass transfer analysis in an air-breathing proton exchange membrane fuel cell

2007 ◽  
Vol 164 (2) ◽  
pp. 721-729 ◽  
Author(s):  
Ying Wang ◽  
Minggao Ouyang
Author(s):  
Hsiao-Kang Ma ◽  
Shih-Han Huang

This paper presents a three-dimensional transitional model to describe an innovative design for an air-breathing proton exchange membrane fuel cell (AB-PEMFC) with a microdiaphragm actuated by a piezoelectric device. This newly designed gas pump with a piezoelectric actuation structure is utilized as an air-flow channel in a proton exchange membrane fuel cell (PEMFC) system called PZT-PEMFC. When the actuator moves in the outward direction to increase the cathode channel volume, the air is sucked into the chamber: inward movement decreases channel volume and thereby compresses air into the catalyst layer and enhances the chemical reaction. The air-standard PZT-PEMFC cycle coupling with fuel∕air ratio is proposed to describe an air-breathing PZT-PEMFC. The model is able to simulate its major phenomena and performance in different fuel∕air ratio and PZT frequency. The results show that the PZT actuation leads to a more stable current output, more drained water, stronger suction, and overcome concentration losses at a proper PZT frequency.


Química Nova ◽  
2021 ◽  
Author(s):  
Shi Lei ◽  
Zheng Minggang

In this paper, the influence of the optimization for flow field size on the proton exchange membrane fuel cell (PEMFC) performance under the inadequate air supply of cathode was studied based on the three-dimensional, steady-state, and constant temperature PEMFC monomer model. Additionally, the effect of the optimization for hybrid factors, including length, width, depth and width-depth, on the PEMFC performance was also investigated. The results showed that the optimization of the flow field size can improve the performance of the PEMFC and ensure that it is close to the level under the normal gas supply.


Sign in / Sign up

Export Citation Format

Share Document