scholarly journals Three-dimensional simulation of a new cooling strategy for proton exchange membrane fuel cell stack using a non-isothermal multiphase model

2019 ◽  
Vol 255 ◽  
pp. 113865 ◽  
Author(s):  
Guobin Zhang ◽  
Hao Yuan ◽  
Yun Wang ◽  
Kui Jiao
Author(s):  
N. Fekrazad ◽  
T. L. Bergman

A three-dimensional model of a Proton Exchange Membrane fuel cell stack is developed. Taking advantage of the geometrical periodicity of a typical stack assembly, the model is used to predict the thermal, humidity, and electrochemical distributions within the fuel cell. Of particular interest is the effect of the compressive force used to assemble the stack on the fuel cell’s (a) power output and (b) internal temperature distribution. Application of non-uniform clamping pressure is considered, and predictions suggest that thermal conditions within the stack can be made more uniform with negligible impact on the fuel cell power. Hence, improved fuel cell stack durability might be achieved through judicious application of non-uniform clamping pressures for stack assembly.


Author(s):  
Frano Barbir ◽  
Haluk Gorgun ◽  
Xinting Wang

Pressure drop on the cathode side of a PEM (Proton Exchange Membrane) fuel cell stack has been studied and used as a diagnostic tool. Since the Reynolds number at the beginning of the flow field channel was <250, the flow through the channel is laminar, and the relationship between the pressure drop and the flow rate is linear. Some departure from linearity was observed when water was either introduced in the stack or produced inside the stack in the electrochemical reaction. By monitoring the pressure drop in conjunction with the cell resistance in an operational fuel cell stack, it was possible to diagnose either flooding or drying conditions inside the stack.


Sign in / Sign up

Export Citation Format

Share Document