Water removal characteristics of proton exchange membrane fuel cells using a dry gas purging method

2008 ◽  
Vol 180 (2) ◽  
pp. 784-790 ◽  
Author(s):  
Sang-Yeop Lee ◽  
Sang-Uk Kim ◽  
Hyoung-Juhn Kim ◽  
Jong Hyun Jang ◽  
In-Hwan Oh ◽  
...  
Author(s):  
P. Karthikeyan ◽  
H. Calvin Li ◽  
G. Lipscomb ◽  
S. Neelakrishnan ◽  
J. G. Abby ◽  
...  

The most critical aspect of fuel cell water management is the delicate balance of membrane hydration and avoiding cathode flooding. Liquid water accumulation in the interfacial contact area between the flow channel landing and gas diffusion layer (GDL) can dramatically impact steady and transient performance of proton exchange membrane fuel cells (PEMFCs). In this concern, a porous landing could facilitate water removal in the cathode flow channel and significantly improve PEMFCs performance. In this work, an attempt has been made to fabricate the porous interdigitated cathode flow channels from a porous carbon sheet. Performance measurements have been made with nominally identical PEMFCs using non-porous (serpentine and interdigitated) and porous (interdigitated) cathode flow channels. PEMFCs with porous interdigitated flow channels had 48% greater power output than PEMFCs with non-porous interdigitated flow channels at high current densities. For the non-porous interdigitated flow channel, significant performance loss appears to arise from greatly reduced oxygen transport rates when the water generation rate exceeds the water removal rate, however for the porous interdigitated flow channel, the design removes the accumulated liquid water from the landing area through the capillarity of its porous structure and eliminates the stagnant regions under the landing, thereby reducing liquid flooding in the interface between landing and GDL area.


2019 ◽  
Vol 1 (6) ◽  
pp. 439-452 ◽  
Author(s):  
Cullen R. Buie ◽  
Jonathan Posner ◽  
Tibor Fabian ◽  
Suk-Won Cha ◽  
Daejoong Kim ◽  
...  

2015 ◽  
Vol 12 (4) ◽  
Author(s):  
P. K. Jithesh ◽  
T. Sundararajan ◽  
Sarit K. Das

The performance of a proton exchange membrane (PEM) fuel cell strongly depends on the nature of reactant distribution and the effectiveness of liquid water removal. In this work, three different configurations of a mixed flow distributor are studied analytically and numerically to find out the effect of nonuniform under-rib convection on reactant and liquid water distribution in the cell. In a mixed flow distributor, the rate of under-rib convection is found to be different under each rib in the same flow sector which results in different rates of removal of liquid water. This helps to retain some water to hydrate the membrane, whereas the excess is removed to avoid flooding. It is found that under-rib convection aids to get better reactant distribution, reduces pressure drop, and provides better control over liquid water removal which is helpful in developing efficient water management strategies for PEM fuel cells.


2019 ◽  
Author(s):  
Valentina Guccini ◽  
Annika Carlson ◽  
Shun Yu ◽  
Göran Lindbergh ◽  
Rakel Wreland Lindström ◽  
...  

The performance of thin carboxylated cellulose nanofiber-based (CNF) membranes as proton exchange membranes in fuel cells has been measured in-situ as a function of CNF surface charge density (600 and 1550 µmol g<sup>-1</sup>), counterion (H<sup>+</sup>or Na<sup>+</sup>), membrane thickness and fuel cell relative humidity (RH 55 to 95 %). The structural evolution of the membranes as a function of RH as measured by Small Angle X-ray scattering shows that water channels are formed only above 75 % RH. The amount of absorbed water was shown to depend on the membrane surface charge and counter ions (Na<sup>+</sup>or H<sup>+</sup>). The high affinity of CNF for water and the high aspect ratio of the nanofibers, together with a well-defined and homogenous membrane structure, ensures a proton conductivity exceeding 1 mS cm<sup>-1</sup>at 30 °C between 65 and 95 % RH. This is two orders of magnitude larger than previously reported values for cellulose materials and only one order of magnitude lower than Nafion 212. Moreover, the CNF membranes are characterized by a lower hydrogen crossover than Nafion, despite being ≈ 30 % thinner. Thanks to their environmental compatibility and promising fuel cell performance the CNF membranes should be considered for new generation proton exchange membrane fuel cells.<br>


Sign in / Sign up

Export Citation Format

Share Document