low gravity
Recently Published Documents


TOTAL DOCUMENTS

659
(FIVE YEARS 82)

H-INDEX

37
(FIVE YEARS 6)

2022 ◽  
Vol 74 (1) ◽  
Author(s):  
Patrick Michel ◽  
Stephan Ulamec ◽  
Ute Böttger ◽  
Matthias Grott ◽  
Naomi Murdoch ◽  
...  

AbstractThe Japanese MMX sample return mission to Phobos by JAXA will carry a rover developed by CNES and DLR that will be deployed on Phobos to perform in situ analysis of the Martian moon’s surface properties. Past images of the surface of Phobos show that it is covered by a layer of regolith. However, the mechanical and compositional properties of this regolith are poorly constrained. In particular, from current remote images, very little is known regarding the particle sizes, their chemical composition, the packing density of the regolith as well as other parameters such as friction and cohesion that influence surface dynamics. Understanding the properties and dynamics of the regolith in the low-gravity environment of Phobos is important to trace back its history and surface evolution. Moreover, this information is also important to support the interpretation of data obtained by instruments onboard the main MMX spacecraft, and to minimize the risks involved in the spacecraft sampling operations. The instruments onboard the Rover are a Raman spectrometer (RAX), an infrared radiometer (miniRad), two forward-looking cameras for navigation and science purposes (NavCams), and two cameras observing the interactions of regolith and the rover wheels (WheelCams). The Rover will be deployed before the MMX spacecraft samples Phobos’ surface and will be the first rover to drive on the surface of a Martian moon and in a very low gravity environment. Graphic Abstract


Author(s):  
Vishwajeet Shankhwar ◽  
Dilbag Singh ◽  
Renuka Garg ◽  
Kamleshwar Kumar Verma ◽  
K.K. Deepak

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Hamid Sanavandi ◽  
Wei Guo

AbstractLow-gravity environment can have a profound impact on the behaviors of biological systems, the dynamics of fluids, and the growth of materials. Systematic research on the effects of gravity is crucial for advancing our knowledge and for the success of space missions. Due to the high cost and the limitations in the payload size and mass in typical spaceflight missions, ground-based low-gravity simulators have become indispensable for preparing spaceflight experiments and for serving as stand-alone research platforms. Among various simulator systems, the magnetic levitation-based simulator (MLS) has received long-lasting interest due to its easily adjustable gravity and practically unlimited operation time. However, a recognized issue with MLSs is their highly non-uniform force field. For a solenoid MLS, the functional volume V1%, where the net force results in an acceleration <1% of the Earth’s gravity g, is typically a few microliters (μL) or less. In this work, we report an innovative MLS design that integrates a superconducting magnet with a gradient-field Maxwell coil. Through an optimization analysis, we show that an unprecedented V1% of over 4000 μL can be achieved in a compact coil with a diameter of 8 cm. We also discuss how such an MLS can be made using existing high-Tc-superconducting materials. When the current in this MLS is reduced to emulate the gravity on Mars (gM = 0.38g), a functional volume where the gravity varies within a few percent of gM can exceed 20,000 μL. Our design may break new ground for future low-gravity research.


2021 ◽  
Author(s):  
Shujiang Wu ◽  
Ming Gao ◽  
Song Yin ◽  
Yuzhong Lou ◽  
Shuo Liu ◽  
...  

2021 ◽  
Vol 25 (4) ◽  
pp. 78-87
Author(s):  
Seungwhan Baek ◽  
Isang Yu ◽  
Jaehyun Shin ◽  
Kwangkun Park ◽  
Youngsuk Jung ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document