A multi-level simulation platform of natural gas internal reforming solid oxide fuel cell–gas turbine hybrid generation system – Part II. Balancing units model library and system simulation

2011 ◽  
Vol 196 (20) ◽  
pp. 8424-8434 ◽  
Author(s):  
Cheng Bao ◽  
Ningsheng Cai ◽  
Eric Croiset
2005 ◽  
Vol 2 (2) ◽  
pp. 136-140 ◽  
Author(s):  
Eric S. Greene ◽  
Maria G. Medeiros ◽  
Wilson K. S. Chiu

A one-dimensional model of chemical and mass transport phenomena in the porous anode of a solid-oxide fuel cell, in which there is internal reforming of methane, is presented. Macroscopically averaged porous electrode theory is used to model the mass transfer that occurs in the anode. Linear kinetics at a constant temperature are used to model the reforming and shift reactions. Correlations based on the Damkohler number are created to relate anode structural parameters and thickness to a nondimensional electrochemical conversion rate and cell voltage. It is shown how these can be applied in order to assist the design of an anode.


2019 ◽  
Vol 131 ◽  
pp. 1032-1051 ◽  
Author(s):  
Maciej Chalusiak ◽  
Michal Wrobel ◽  
Marcin Mozdzierz ◽  
Katarzyna Berent ◽  
Janusz S. Szmyd ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document