High temperature polybenzimidazole membrane electrode assemblies using pyridine-polybenzimizazole as catalyst layer binder

2014 ◽  
Vol 260 ◽  
pp. 131-139 ◽  
Author(s):  
Po-Hao Su ◽  
Joy Cheng ◽  
Jia-Fen Li ◽  
Yi-Hsiang Liao ◽  
T. Leon Yu
Author(s):  
Dave C. Guglielmo ◽  
Todd T. B. Snelson ◽  
Daniel F. Walczyk

Ultrasonic bonding, with its extremely fast cycle times and energy efficiency, is being investigated as an important manufacturing technology for future mass production of fuel cells. The objectives of the authors’ research are to (1) create a multi-physics simulation model that predicts through-thickness energy distribution and temperature gradients during ultrasonic sealing of polybenzimidazole (PBI) based Membrane Electrode Assemblies (MEAs) for High Temperature PEM fuel cells, and (2) correlate the model with experimentally measured internal interface (e.g., membrane/catalyst layer) temperatures. The multi-physics model incorporates the electrode and membrane material properties (stiffness and damping) in conjunction with the ultrasonic process parameters including pressure, energy flux and vibration amplitude. Overall, the processing of MEAs with ultrasonic bonding rather than a hydraulic thermal press results in MEAs that meet or exceed required performance specifications, and potentially reduces the manufacturing time from minutes to seconds.


2013 ◽  
Vol 10 (1) ◽  
Author(s):  
Toshiro Kobayashi ◽  
Etsuro Hirai ◽  
Hideki Itou ◽  
Takuya Moriga

This paper describes the development of mass-production technology for membrane-electrode assemblies (MEA) with a radical capturing layer and verifies its performance. Some of the authors of this paper previously developed an MEA with a radical capturing layer along the boundaries between the electrode catalyst layer and the polymer membrane to realize an endurance time of 20,000 h in accelerated daily start and daily stop (DSS) deterioration tests. Commercialization of these MEAs requires a production technology that suits mass production lines and provides reasonable cost performance. After developing a water-based slurry and selecting a gas diffusion layer (GDL), a catalyst layer forming technology uses a rotary screen method for electrode formation. Studies confirmed continuous formation of the catalyst layer, obtaining an anode/cathode thickness of 55 μm (+10/−20)/50 μm (+10/−20) by optimizing the opening ratio and thickness of the screen plate. A layer-forming technology developed for the radical capturing layer uses a two-fluid spraying method. Continuous formation of an 8 μm thick (±3 μm) radical capturing layer proved feasible by determining the appropriate slurry viscosity, spray head selection, and optimization of spraying conditions.


Fuel Cells ◽  
2016 ◽  
Vol 16 (5) ◽  
pp. 577-583 ◽  
Author(s):  
M. Rau ◽  
A. Niedergesäß ◽  
C. Cremers ◽  
S. Alfaro ◽  
T. Steenberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document